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Plenary Speakers

Classes of “big” spaces from characterizations of metrizability
Claudio Agostini1

1Technische Universität Wien, Vienna, Austria.
Winner of the “Franco Montagna" prize.

Metrizable spaces are a key concept in numerous areas of mathematics, including
descriptive set theory. Consequently, many different characterizations of metrizability
have been proposed.

Each characterization brings light on the crucial topological properties that guarantee
the desirable behavior of metric spaces. These properties are particularly valuable in gen-
eralized descriptive set theory, where they help define new classes of non-first-countable
(and thus non-metrizable) topological spaces. This enables the extension of classical de-
scriptive set theory results pertaining to Polish spaces to these new classes of spaces.

Various theorems offer different properties that define distinct classes of spaces, lead-
ing to questions about the existence of a preferable class and the sufficiency of specific
properties for deriving certain theorems.

In this talk, I will examine different characterizations of metrizability, compare them,
and show how some results from classical descriptive set theory can be recovered from
certain properties and not from others.

This is joint work⋆ with Luca Motto Ros.

Inquisitive neighborhood logic
Ivano Ciardelli1

1Università di Padova, Padua, Italy.

In this talk, I will first introduce the motivation and the key ideas of the ongoing
research program on inquisitive modal logic. I will then present a particular system of in-
quisitive modal logic designed to talk about properties of neighborhood structures, whose
basic modality is a sort of strict conditional quantifying over neighborhoods. I will dis-
cuss two concrete interpretations of this logic, characterize its expressive power in terms
of a natural notion of bisimulation, and present complete axiomatizations for some salient
classes of frames.

⋆Supported by the FWF grant P35655-N.
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Differential linear logic: from semantics to syntax
Thomas Ehrhard1

1Université Paris Cité, CNRS, Paris, France.

In 1969, Dana Scott met Christopher Strachey in Oxford. Together they created a new
branch of fundamental computer science: denotational semantics. Since the mid 60’s,
Strachey was advocating a mathematical semantics of programs independent from their
implementation on actual computers. Due to the increasing number of computer architec-
tures and of programming languages, the need of such a semantics became indeed more
and more critical. Denotational semantics is based on new ideas of Scott which allowed
him in 1968 to build the complete lattice D∞, solving a long-standing problem: find a
mathematical interpretation of pure lambda-terms allowing to see them as the functions
they are intuitively denoting.

Denotational semantics was mainly considered of a topological nature until 1986,
when Jean-Yives Girard discovered linear logic, recasting proofs and programs in a set-
ting much closer to linear algebra (often in infinite dimension, where topology may be-
come necessary). The denotational models of linear logic are intuitively categories of
linear morphisms equipped with an exponential, a modality (technically, a comonad) al-
lowing them to host also non-linear morphisms which are intuitively to be considered as
analytic functions. One major feature of linear logic is to deeply relate algebraic linearity
with operational linearity: a program is linear when it uses completely and exactly once
its argument.

Linear logic has a pivotal rule called dereliction allowing to see a linear morphism as
an analytic one, simply forgetting linearity. In most models of linear logic, this rule has a
kind of inverse which can be understood as an operation of “differentiation at 0”. In the
early 2000’s I observed that, in severeal interesting models of linear logic, this coderelic-
tion rule is complemented with additional rules, symmetric to the usual structural rules
associated in linear logic with the exponential. Altogether, these new rules allow to com-
pute the differential of an arbitrary proof of linear logic. Starting from this observation,
with Laurent Regnier, we introduced differential linear logic and the differential lambda-
calculus.

In this talk, I will present this global conceptual framework and explain how we de-
velopped the differential lambda-calculus, introducing in particular the Taylor expansion
of lambda-terms which uses iterated differentiation of terms and provides a fine-grain
algebraic theory of program approximations. I will also discuss the need to equip the
differential lambda-calculus with an addition operation on terms, the operational and de-
notational consequences of this operation, and how it can be controlled in the recently
discovered setting of coherent differentiation.
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The strength of a theorem of Rival and Sands
Marta Fiori Carones1

1Sobolev Institute of Mathematics, Novosibirsk, Russia.
Winner of the "Ada Lettieri" prize.

marta.fioricarones@outlook.it

In 1979 Ivan Rival and Bill Sands proved that each infinite graph G has an infinite
subgraph H such that each vertex of G is adjacent to none or to one or to infinitely many
vertices ofH . This statement, showing the existence of a substructure with some property
in every infinite graphs, resembles Ramsey’s theorem for pairs, which guarantees the
existence of a complete or a totally disconnected subgraph in each infinite undirected
graph.

We investigated the strength of this statement (restricted to countable graphs) from the
viewpoint of Weihrauch reducibility and reverse mathematics. During the talk variants of
this theorem and their strength are also presented.

This is joint work with Paul Shafer and Giovanni Soldà.

References

[1] M. Fiori-Carones, P. Shafer, G. Soldà, An inside-outside Ramsey theorem and com-
putability theory, Trans. Amer. Math. Soc. 375, (2022) 1977–2024

[2] I. Rival, B. Sands, On the adjacency of vertices to the vertices of an infinite subgraph,
Journal of the London Math. Society. 21 (1980), 393-–400

Model theory of complex analytic functions: quasiminimality and
existential closedness

Francesco Gallinaro1

1Dipartimento di Matematica, Università di Pisa, Italy.
francesco.gallinaro@dm.unipi.it

A (model-theoretic) structure S is quasiminimal if all the definable subsets of S are
countable or have countable complement. In the 1990s, Zilber made a striking conjec-
ture [3] predicting that the complex numbers seen as a structure in the language of rings
expanded by a symbol for the complex exponential function should be quasiminimal.

This conjecture soon turned out to be related to several results and open problems from
transcendental number theory and Diophantine geometry, and in turn opened up new lines
of research, both in logic and geometry. In logic, it led to the development of a theory for
quasiminimal structures, with categoricity theorems for classes of quasiminimal structures
axiomatizable in some infinitary logic. In geometry, existential closedness problems were
introduced: these are concerned with the existence of solutions to systems of equations
involving polynomials and certain analytic functions, such as the complex exponential or
the modular j invariant. Bays and Kirby’s result from [1] was an important milestone,
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establishing that the quasiminimality conjecture for exp (a purely model-theoretic state-
ment) would follow from the exponential-algebraic closedness conjecture, which predicts
the existence of solutions of appropriate systems of polynomials and exponentials.

In this talk I will survey some of these conjectures and the relations between them,
and some partial results towards them. In particular, I will discuss the result of Kirby and
myself [2] about quasiminimality of the complex field expanded with multivalued power
functions, where for each λ ∈ C the power function w 7→ wλ on C× maps w ∈ C× to the
set of determinations of exp(λ logw).

References

[1] M. Bays, J. Kirby, Pseudo-exponential maps, variants, and quasi- minimality". In:
Algebra And Number Theory 12.3, pp. 493-549. (June 2018)

[2] F. Gallinaro, J. Kirby, Quasiminimality of complex powers. eprint: arXiv2304.06450.
(2023)

[3] B. Zilber, B. Sands, Generalized analytic sets. In: Algebra and Logic 36 (1997), pp.
226 235.. (1997)

Stone duality for spectral sheaves and the patch monad
Mai Gehrke1

1Université Côte d’Azur, Nice, France.

Sheaf representations may be viewed as generalising Stone’s representation theorem
and the ensuing duality for Boolean algebras. In this setting, we establish a duality be-
tween global sheaves on spectral spaces and a category of very simple idempotent semi-
groups known as right distributive bands. This is a sheaf-theoretical extension of classical
Stone duality between spectral spaces and bounded distributive lattices. The topology of
a spectral space admits a refinement, the so-called patch topology, giving rise to a monad
on sheaves over a fixed spectral space which we call the patch monad. Under the duality
just mentioned the algebras of this patch monad are shown to correspond to distributive
skew lattices, where skew lattices are a non-commutative variant of lattices originating in
quantum logic and operator algebra. The research reported on in this talk is joint work
with Clemens Berger.
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Borel-definable algebraic topology
Martino Lupini1

1Università di Bologna, Italy.
Winner of the "Paolo Gentilini" prize.

martino.lupini@unibo.it

Recently, Bergfalk, Panagiotopoulos, and I have introduced refinements of classical
algebraic invariants endowed with additional information of descriptive set-theoretic na-
ture. I will present an overview of applications of such Borel-definable invariants to al-
gebra and topology, obtained jointly with Bergfalk, Casarosa, Codenotti, Meadows, Sarti,
and Panagiotopoulos.

On point to set principles, normality, and algorithmic randomness
Elvira Mayordomo12

1Dpto de Informática e Ingeniería de Sistemas, Inst. de Investigación en Ingeniería de Aragón,
Universidad de Zaragoza, Spain.

2Iowa State University, USA.
elvira@unizar.es

Effective and resource-bounded dimensions were defined by Lutz in [5] and [4] and
have proven to be useful and meaningful for quantitative analysis in the contexts of al-
gorithmic randomness, computational complexity and fractal geometry (see the surveys
[2, 6, 3, 10] and all the references in them).

The point-to-set principle of J. Lutz and N. Lutz [7] fully characterizes Hausdorff and
packing dimensions in terms of effective dimensions in the Euclidean space, enabling
effective dimensions to be used to answer open questions about fractal geometry, with
already an interesting list of geometric measure theory results (see [9, 8]).

Finite state dimension [1] is the lowest level effectivization of Hausdorff dimension
and is closely related to Borel normality. In this talk I will review its main properties,
prove a new characterization in terms of information content approximated at a certain
precision, and consider new generalizations of normality. I will then prove a finite-state
dimension point to set principle [11].

Research supported in part by Spanish Ministry of Science and Innovation grant
PID2022-138703OB-I00 and by the Science dept. of Aragon Government: Group Refer-
ence T64_20R (COSMOS research group).
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Infinite Games and Large Cardinals:
Attacking Independence by Connecting the Hierarchies

Sandra Müller1

1Technische Universität Wien, Vienna, Austria
sandra.mueller@tuwien.ac.at

The independence phenomenon is a central theme in set theory. Moreover, starting
from the Continuum Problem, there are numerous statements in various areas of mathe-
matics that can neither be proven nor disproven in the usual axiomatic framework given
by the Zermelo Fraenkel Axioms. The most promising approach to attack this issue is by
studying extensions of the usual axiomatic framework, their connections, and their impact
on previously independent statements. Two famous examples in set theory are the hierar-
chies given by the determinacy of infinite two-player games and large cardinals. The deep
connection between these two hierarchies forms the backbone of inner model theory. We
outline this connection and discuss recent progress as well as important open questions in
the area.
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This research was funded in whole or in part by the Austrian Science Fund (FWF)
[10.55776/V844, 10.55776/Y1498, 10.55776/I6087]. For open access purposes, the au-
thor has applied a CC BY public copyright license to any author accepted manuscript
version arising from this submission.

Rigidity, Rigidity, Rigidity!
Alessandro Vignati12

1Institut de Mathématiques de Jussieu-Paris Rive Gauche, Paris, France
2 Université Paris Cité, Paris, France

We are interested in the effects of additional set theoretic axioms on quotient structures
and their isomorphisms. Our focus is on rigidity, measured in terms of existence (or
rather non-existence) of suitably non-trivial isomorphisms of the quotients in question.
Consider for example the Boolean algebra P(ω)/Fin: Forcing axioms imply that all of
its automorphisms are trivial, while under the Continuum Hypothesis this rigidity fails.
This behavior is the template around which this area of work revolves, and in this talk we
consider some of its generalizations. We present a variety of situations where analogous
patterns persist, such as (reduced products of) Boolean algebras, graphs, groups, or linear
orders, but also more analytic objects such as Čech–Stone remainders, C∗-algebras or
even objects constructed from coarse geometrical data.
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Contributed talks

Vietoris endofunctor for closed relations and its de Vries dual
Marco Abbadini1, Guram Bezhanishvili2, Luca Carai3

1University of Birmingham, U.K.
marco.abbadini.uni@gmail.com

2New Mexico State University, Las Cruces, New Mexico, U.S.A.
guram@nmsu.edu

3Università degli Studi di Milano, Milan, Italy.
luca.carai.uni@gmail.com

SPEAKER: Marco Abbadini.

We generalize the Vietoris endofunctor to the category of compact Hausdorff spaces
and closed relations and describe the dual endofunctor on the category of de Vries alge-
bras and subordinations. This presentation is based on [3].

Taking the Vietoris hyperspace V(X) of a compact Hausdorff space X defines an
endofunctor V on the category KHaus of compact Hausdorff spaces and continuous func-
tions. On morphisms, a continuous function f : X → Y is mapped to the function
V(f) : V(X) → V(Y ) which maps a closed subset F of X to the image f [F ] of F under
f .

The larger category KHausR of compact Hausdorff spaces and closed relations has
been investigated in various works [11, 8, 10, 5, 1]. One appealing feature of KHausR is
that it is self-dual. We generalize the Vietoris endofunctor to an endofunctor VR : KHausR →
KHausR. For a subordination R ⊆ X × Y , we define VR(R) by generalizing the well-
known Egli-Milner order: for all closed subsets F ⊆ X and G ⊆ Y ,

F VR(R) G ⇐⇒ G ⊆ R[F ] and F ⊆ R−1[G],

where R[F ] is the R-image of F in Y and R−1[G] is the R-preimage of G in X . We show
that this defines an endofunctor VR : KHausR → KHausR which restricts to the Vietoris
endofunctor V : KHaus→ KHaus and commutes with the self-duality of KHausR.

De Vries duality [7] is a duality for KHaus which associates with each compact Haus-
dorff spaceX the boolean algebraRO(X) of regular opens ofX equipped with the prox-
imity relation given by U ≺ V iff cl(U) ⊆ V . This yields a duality between KHaus and
the category DeV of de Vries algebras, i.e. pairs (B,≺) where B is a complete boolean
algebra and ≺ is a proximity relation on B. A direct pointfree construction of the endo-
functor DeV → DeV dual to V : KHaus→ KHaus remained an open problem [4, p. 375].
We resolve this problem as follows.

In [1] we extended de Vries duality to KHausR. Let StoneR be the full subcategory
of KHausR consisting of Stone spaces. Stone duality extends to an equivalence between
StoneR and the category BAS with boolean algebras as objects and subordination rela-
tions as morphisms [6, 9, 1]. This yields an equivalence between KHausR and a category
whose objects are pairs (B, S) where B is a boolean algebra and S is a subordination
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relation on B satisfying axioms generalizing the axioms of an S5-modality. Because of
this connection, we termed the pairs (B, S) S5-subordination algebras and denoted the
resulting category by SubS5S [1]. The inclusion DeVS ↪−→ SubS5S of the full subcate-
gory DeVS consisting of de Vries algebras is an equivalence, with quasi-inverse obtained
by generalizing the MacNeille completion to S5-subordination algebras [2].

In [12], the endofunctor K on boolean algebras dual to the Vietoris endofunctor V on
Stone spaces was defined. We lift K to an endofunctor KS on BAS equivalent to VR on
StoneR. Finally, we lift KS to an endofunctor on SubS5S equivalent to VR on KHausR.
Composing it with the MacNeille completion yields an endofunctor on DeVS equivalent
to VR. This solves the problem mentioned above in the category SubS5S, in its full sub-
category DeVS, and finally in DeV via a duality between DeV and a wide subcategory of
DeVS.

References

[1] M. Abbadini, G. Bezhanishvili, and L. Carai. A generalization of de Vries duality
to closed relations between compact Hausdorff spaces. Topology Appl., 337:Paper
No. 108641, 2023.

[2] M. Abbadini, G. Bezhanishvili, and L. Carai. MacNeille completions of subordina-
tion algebras. Cah. Topol. Géom. Différ. Catég., 65:151–199, 2024.

[3] M. Abbadini, G. Bezhanishvili, and L. Carai. Vietoris endofunctor for closed
relations and its de Vries dual. Topology Proc., 2024. To appear. Preprint at
arXiv:2308.16823.

[4] G. Bezhanishvili, N. Bezhanishvili, and J. Harding. Modal operators on compact
regular frames and de Vries algebras. Appl. Categ. Structures, 23(3):365–379, 2015.

[5] G. Bezhanishvili, D. Gabelaia, J. Harding, and M. Jibladze. Compact Hausdorff
spaces with relations and Gleason spaces. Appl. Categ. Structures, 27(6):663–686,
2019.

[6] S. A. Celani. Quasi-semi-homomorphisms and generalized proximity relations be-
tween Boolean algebras. Miskolc Math. Notes, 19(1):171–189, 2018.

[7] H. de Vries. Compact spaces and compactifications. An algebraic approach. PhD
thesis, University of Amsterdam, 1962.

[8] A. Jung, M. Kegelmann, and M. A. Moshier. Stably compact spaces and closed
relations. In MFPS 2001. Papers from the 17th Conference on the Mathematical
Foundations of Programming Semantics, Aarhus University, Aarhus, Denmark, May
23–26, 2001, pages 209–231. Amsterdam: Elsevier, 2001.

[9] A. Kurz, A. Moshier, and A. Jung. Stone duality for relations. In A. Palmigiano and
M. Sadrzadeh, editors, Samson Abramsky on Logic and Structure in Computer Sci-
ence and Beyond, pages 159–215. Springer International Publishing, Cham, 2023.

[10] M. A. Moshier. On the relationship between compact regularity and Gentzen’s cut
rule. Theor. Comput. Sci., 316(1-3):113–136, 2004.

9

https://arxiv.org/abs/2308.16823


[11] C. F. Townsend. Preframe techniques in constructive locale theory. PhD thesis,
Imperial College London (University of London), 1996.

[12] Y. Venema and J. Vosmaer. Modal logic and the Vietoris functor. In G. Bezhan-
ishvili, editor, Leo Esakia on duality in modal and intuitionistic logics, volume 4 of
Outst. Contrib. Log., pages 119–153. Springer, Dordrecht, 2014.

On Propositional Dynamic Logic and Concurrency
Matteo Acclavio1, Fabrizio Montesi2, Marco Peressotti2

1University of Sussex, Brighton, UK.
2University of Southern Denmark, Odense, Denmark.

SPEAKER: Matteo Acclavio.

Logic, and in particular proof theory, offers several approaches to reason about differ-
ent computational properties of programs. The Curry-Howard correspondence represents
a program by a proof, thus providing a strong foundation for the development of type sys-
tems [29, 3, 8]. In logic programming, a program is an inference system, which allows for
using proof search as the means of execution [17, 19]. In dynamic logic (DL), programs
are part of the language of formulas itself, which enables the direct use of the logic to
reason about the semantics of programs [10]. Under the latter view, the purpose of pro-
grams is to change the truth value of a formula. At the syntactical level, each program a
defines the modalities [a] and ⟨a⟩ and a formula [a]ϕ is interpreted as “every state reached
after executing a satisfies the formula ϕ” while a formula ⟨a⟩ϕ is interpreted as “there is a
state reached after executing a satisfying the formula F ”. This idea has been of profound
inspiration in the field of formal verification [28, 6]. In this work, we are interested in the
propositional fragment of dynamic logic (Propositional Dynamic Logic, or PDL) [16].

PDL and the concurrency problem
While PDL has been successfully applied to the study of sequential programs, extending
this approach to concurrent programs has been proved to be challenging. In standard PDL,
a program is represented by a regular expression that describes its set of possible traces.
In other words, programs are elements of a free Kleene algebra. This representation of
programs is satisfactory when reasoning about sequential programs, because one obtains
that the theory of equational reasoning for Kleene algebras is a complete system for rea-
soning about trace equivalence [12, 15, 13, 27]. Trace equivalence is therefore captured
by logical equivalence in PDL:

a and b have the same traces iff ⊢PDL [a]ϕ⇔ [b]ϕ . (1)

However, the case of concurrent programs with an interleaving semantics is more
problematic. In the presence of interleaving, one expects traces differing by interleaving
to be equivalent modulo equations of the form a; b = b; a (called commutations). Un-
fortunately, the word problem in a Kleene algebra enriched with an equational theory
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containing such commutations is known to be undecidable [14], which makes undecid-
able checking whether two modalities in PDL are the same. This is proven by reducing the
Post correspondence problem to the word problem by combining sequential composition,
iteration, and commutations.

As a consequence of this problem, applications of PDL to concurrency fall short of
the expected level of expressivity from established theories, like CCS [20] and the π-
calculus [21]. For example, previous works lack nested parallel composition, synchroni-
sation, or recursion [18, 4, 25, 26, 24, 3]. In general, adding any new concurrency feature
(e.g., a construct in the language of programs or a law defining its semantics) requires
great care and effort in establishing the meta-theoretical properties of the logic. The re-
sult: a literature of various PDL, all independently useful, but with different limitations
and dedicated technical developments.

In this talk
We discuss the result in [2], where we develop operational propositional dynamic logic
(OPDL). The key innovation of OPDL is to distinguish and separate reasoning on pro-
grams from reasoning on their traces. Thanks to this distinction, we circumvent previous
limitations and finally obtain a PDL that can be applied to established concurrency mod-
els, such as CCS [20] and choreographic programming [22]. Crucially, OPDL is a general
framework: it is parameterised on the operational semantics used to generate traces from
programs, yielding a simple yet reusable approach to characterise trace reasoning.

After recalling the axiomatization and semantics of PDL, we provide a proof of its
soundness and completeness with respect to the non-wellfounded sequent calculus intro-
duced in [7]. For this purpose, we provide the first cut-elimination result for this non-
wellfounded calculus, by adapting the technique developed in [1].⋆ This allows us to
prove our results by reasoning on the axiomatisation and the sequent system, without
directly relying on semantic arguments.

Then, we extend PDL with an additional axiom allowing us to encapsulate an oper-
ational semantics for a set of programs into the trace reasoning. We call the resulting
logic operational propositional dynamic logic (or OPDL), providing a general framework
encompassing various previous works [18, 4, 9].

We then conclude by instantiating OPDL for for Milner’s CCS [20] and Montesi’s
latest presentation of choreographic programming [23].
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Proof theory is the branch of logic studying proofs as mathematical objects. Since its
appearance at the end of 19th century, this mathematical discipline has seen enormous
progress, also thanks to its strong connection with many areas of theoretical computer
science, providing the foundation for, among others, automated reasoning, formal verifi-
cation and the theory of programming languages. Proofs expressed in various formalisms,
as well as transformations of proofs (e.g., composition and normalization), have been used
to provide different computational paradigms to interpret proofs as abstractions of com-
puter programs.

In proof theory we find an abundance of formalisms to define the same mathematical
objects, as can be observed in many mathematical fields. However, what makes proof
theory an anomaly is the struggle to provide a clear definition of the equivalence between
its basic objects, not only when expressed in two distinct formalisms, but also when two
proofs are represented in the same proof system. The fundamental question “when two
proofs are the same? ” has not been asked formally in recent times. Besides the intuition
that certain proofs may not be the same, find a criterion for simplicity of proofs (also
known as the 24th Hilbert’s problem⋆) or even deciding when two proofs are the same
poses various challenges, not only when comparing proofs in different formalisms, but
also proofs in a same formalisms. In fact, one can say that proof theory, in its current
form, is not the theory of proofs but the theory of proof systems and their properties.

The two main approaches to provide a notion of canonical representative for proofs
relay on the notions of normalization and generality. The first approach aims at reduc-
ing proofs to normal forms (e.g., by cut-elimination in sequent calculus and by removing
elimination-rules in natural deduction), while the second aims at providing a method to
identify proofs by removing non-relevant information. While the first approach has been
successfully applied to establish results such as the consistency of the Arithmetic, as well
as to provide a solid theoretical background to functional programming via the Curry-
Howard-Lambek correspondence, it has some limits due to the possible loss of informa-
tion during normalization (see, e.g., [3]). The intuition behind generality is that the order
of certain inferences in a proof is irrelevant as soon as they could be performed “concur-
rently”, but that the syntaxes we use to represent proofs, similarly to the natural language,
force us to choose a specific order. In this regard, focused proof systems [2] consider-
ably reduce the rule permutations in the sequent calculi by grouping rules into phases and
could be considered a good candidate for a notion of proof equivalence. Nevertheless,
because of the sequential nature of the focused systems, derivations differing for the or-
der of phases are still considered different proofs even if they could be transformed the

⋆After the relatively recent discovery of Hilbert’s notes by Thiele [10].
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one into the other via rule permutations. For this reason, syntaxes such as Girard’s proof
nets[7], Guglielmi’s open deductin [6], and Hughes combinatorial proofs [7, 8] seems the
best option for the study of proof equivalence.

This talk focuses on the syntax of combinatorial proofs, which we use to provide the
following notion of proof equivalence.

Two proofs are the same iff they have the same combinatorial proof. (2)

Combinatorial proofs are a graphical syntax where proofs are encoded by specific
maps (encoding structural rules) from graphs provided with an additional edge relation
(encoding linear proofs) to graphs encoding formulas. Moreover, combinatorial proofs
are a proof system in the sense of [4], since it is possible to check in polynomial time
whether these objects satisfy the topological conditions ensuring that they are encodings
of correct proofs.

• •
• •

( ( a ∨ b ) ∧ a ) ∨ a

b b a a

a a

( ( ( b ∧c ) ⊃ b ) ⊃ a ) ⊃ ( a ∧ a )

Combinatorial proofs capture rules permutations (including those permutations which
are required during the cut-elimination procedure in sequent calculus) and allow to com-
pare proofs in different proof formalisms (see Figure 2), such as sequent calculus [8, 7],
calculus of structures [9], resolution calculus and analytic tableaux [1].

After providing an introduction to the syntax of combinatorial proofs, we discuss the key
features of this formalism, and we analyze the notion of proof equivalenced by Equa-
tion (2) in various proof systems. We then provide an overview of the state of the art of
combinatorial proofs, providing intuitions on how the combinatorial syntax can be ex-
tended and refined to express proofs in relevant, modal, intuitionistic and first-order logic.
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Let ρ be any algebraic language and let Tρ(ω) be the set of ρ-terms (i.e. the algebra of
formulas). By a logic L we mean any substitution invariant finitary consequence relation
⊢⊆ P(Tρ(ω)) × Tρ(ω). If Σ,∆ are finite sets of formulas a clause (a.k.a. a multiple
conclusion rule) is a expression of the form Σ⇒ ∆; a rule is a clause in which ∆ = {δ}
is a singleton.

A clause Σ ⇒ ∆ is derivable in L if Σ ⊢ ∆; a clause is admissible in L if for every
substitution σ:

⊢ σ(α) for all α ∈ Σ implies ⊢ σ(β) for some β ∈ ∆.

Not every admissible clause is derivable; a popular example is Harrop’s rule for intu-
itionistic logic

{¬p→ (q ∨ r)} ⇒ {(¬p→ q) ∨ (¬p→ r)}
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which is admissible but not derivable. Therefore the problem of determining which sets of
admissible clauses (rules) are derivable is paramount. In general if S is a set of admissible
(clauses) rules of a logic L we may say that L is S-complete if every clause (rule) in S is
derivable. S of course can be any set, but usually we consider sets that have some logical
significance. In particular a clause (rule) Σ⇒ ∆ is passive if for any substitution σ, σ(∆)
is not a theorem of L; and it is active if it is not passive. A logic L is

• universally (structurally) complete if every admissible clause (rule) is derivable;

• actively universally (structurally) complete if every active admissible clause (rule)
is derivable;

• passively universally (structurally) complete if every passive admissible clause (rule)
is derivable.

Our techniques we will be mainly algebraic, making use of the so-called Blok-Pigozzi
Galois connection. In a few words if L is an algebraizable logic with equivalent quasi-
variety semantics Q, then the Blok-Pigozzi connections transforms (sets of) formulas of
L into (sets of) equations in Q in a uniform way. In this case clauses of L correspond to
universal sentences in Q and rules of L correspond to quasiequations in Q. As a matter
of fact let’s say that a universal sentence Φ of Q is derivable in Q if Q ⊨ Φ and it is ad-
missible in Q if FQ(ω) ⊨ Φ (⊨ is the usual semantic consequence relation). Then if Q is
the equivalent quasivariety semantics of L the Blok-Pigozzi connection sends admissible
(derivable) clauses ofL into admissible (derivable) universal sentences of Q. This has two
obvious advantages: if L is algebraizable than we can treat any completeness problem in
a purely algebraic fashion; moreover the completeness properties of a quasivariety make
sense independently of their logical origin. Moreover for each of these concept there is a
hereditary counterpart; for instance a quasivariety Q (a logic L) is hereditarily universally
complete if all the subquasivarieties of Q (all the finitary extensions of L) are universally
complete.

We will discuss mainly universal and active universal completeness and their hered-
itary counterparts, linking these topics with other interesting concepts such as (weak)
projectivity, exactness and, more generally, Ghilardi’s algebraic unification theory [3].
Here is a list of some of the results we will present in the talk:

Theorem 1. (see also [2, Proposition 6]) For any quasivariety Q the following are equiv-
alent:

1. Q is universally complete;

2. for every universal class U ⊆ Q, H(U) = H(Q) implies U = Q.

3. Q = ISPu(FQ(ω));

4. every finitely presented algebra in Q is in ISPu(FQ(ω)).

Theorem 2. If every finitely presented algebra in Q is exact then Q is universally com-
plete.

Theorem 3. If Q is universally complete, then Q is unifiable.
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Theorem 4 ([2]). Let Q be a locally finite variety of finite type. Then Q is universally
complete if and only if Q is unifiable and has exact unifiers.

Theorem 5. Let Q be a quasivariety with projective unifiers and such that FQ is trivial;
then Q is hereditarily universally complete.

Theorem 6. Let Q be a quasivariety. The following are equivalent:

1. Q is actively universally complete;

2. every unifiable algebra in Q is in ISPu(FQ(ω));

3. every finitely presented and unifiable algebra in Q is in ISPu(FQ(ω));

4. every clause admissible in Q is satisfied by all finitely presented unifiable algebras
in Q;

5. for every A ∈ Q, A× FQ ∈ ISPu(FQ(ω)).

Theorem 7. Suppose that Q is a quasivariety such that FQ = FQ′ for all nontrivial
Q′ ⊆ Q. If Q has projective unifiers then it is hereditarily active universally complete.

We will also discuss several examples and show that the class of hereditarily active
universally complete quasivarieties is strictly smaller then the class of active universally
complete quasivarieties. Finally we remark that all the results we have mentioned are
contained in [1].
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(Prop) Instances of propositional tautologies (MP) From φ→ ψ and φ infer ψ
(M) □(φ ∧ ψ)→ (□φ ∧□ψ) (C) (□φ ∧□ψ)→ □(φ ∧ ψ)
(K) □(φ→ ψ)→ (□φ→ □ψ) (N) □⊤

(Rm) From φ→ ψ infer □φ→ □ψ (Nec) From φ infer □φ
(Re) From φ↔ ψ infer □φ↔ □ψ

(I) From φ→ ψ and ψ → χ infer (□φ ∧□χ)→ □ψ (S) □⊤ ↔ □⊥

Table 1: Axioms and rules.
.
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This abstract is partly based on [5].

1. Weak Modal Logics

Consider the standard modal language: φ ::= p | ¬φ | (φ∧φ) | □φ, where p ∈ Prop

(a set of atomic propositions). We assume the standard derived propositional connectives,
and we write ⋄φ for ¬□¬φ. The most commonly used axioms and rules for modal logics
[3] are shown in the upper part of Table 1. We follow the standard convention of naming
axiomatic systems. All the systems we consider are implicity assumed to the axiom (Prop)
and the rule (MP). System E extends this basic system with the (Re) rule, EK extends E
with axiom (K), and so on. We sometimes abuse notation and also use L for the smallest
set of formulas that contains the axioms of L and is closed under the rules of L; we say
that a formula is derivable if it is contained in L and that a rule is admissible if L is closed
under the rule.

We are interested in modal logics that are not normal (does not contain both (K) and
(Nec) but still are classical (admits (Re)), and in particular classical logics that are not
monotonic (does not contain (M)). All normal modal logics are monotonic. A classical
logic is montonic iff (Rm) is admissible.

2. The Interpolation Rule

In this paper we would like to focus on a new, or at least neglected, rule that we call
the interpolation rule (I) – see Table 1. ψ here acts as an “interpolant” between φ and χ⋆.

⋆Note that unlike in Craig’s interpolation theorem [1], the most well-known use of the term “interpola-
tion” in formal logic, there is no assumption about common vocabulary among the involved formulas.
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The Interpolation rule is at the same time a strengthening of the Equivalence rule and a
weaking of the Monotonicity rule:

Proposition 1. (Re) is admissible in any logic containing (I). (I) is adm. in any logic
containing (Rm).

Thus we have, for example, that ECK ⊆ ICK ⊆ RmCK. Both inclusions are strict:

Proposition 2. (I) is not admissible in EK or ECK. (Rm) is not admissible in IC.

One difference between Equivalence and Monotonicity is that in the presence of the
(C) axiom the latter can derive the (K) axiom while the former cannot. As Interpolation is
“in between”, a natural question is on which side it falls on. The following answers that
question.

Proposition 3. □(φ→ ψ)→ (□φ→ □ψ) is derivable in IC.

We can thus position the interpolation rule in the landscape of non-normal modal log-
ics as follows: EK ⊂ ECK ⊂ ICK = IC ⊂ RmCK = EMCK = EMC

As pointed out by [4], modal logics with “the normality schema” (K) but which nev-
ertheless are sub-normal have been “widely neglected” when it comes to logical investi-
gations. One possible reason for this is a perceived lack of applications. We now demon-
strate that natural applications exist.

An Application: Secretly Knowing

Let us briefly sketch a natural application of the interpolation rule, in the logic of
knowledge and belief [2] – more specifically in the logic of “secretly knowing⋆”. A two-
agent⋆ (Kripke) modelM = (W,Ra, Rb, V ) consists of a set of statesW , a binary relation
Ra on W called a’s accessibility relation, and the same for b, and a valuation function
V : W → 2Prop.

We will now interpret □φ as “agent a secretly knows that φ” in the sense that (1) a
knows φ (φ is true in all the states she considers possible) and (2) that a knows that b
doesn’t know φ⋆: M,w |= p iff w ∈ V (p); M,w |= ¬φ iff M,w ̸|= φ; M,w |= φ ∧ ψ
iff M,w |= φ and M,w |= ψ; M,w |= □φ iff ∀w′ ∈ W , if wRaw

′ then M,w′ |= φ and
∃u ∈ W s.t. w′Rbu and M,u |= ¬φ.

This thus interprets the box as a combined knowledge and ignorance modality, and
it should come as no surprise that it is not normal – it is not monotonic. Perhaps more
surprisingly, it is captured exactly by the Interpolation rule (in addition to the adjunctive
axiom (C) and the (S) axiom).

Theorem 4. ICS is sound and complete⋆ with respect to the class of all Kripke models
(interpreting the modal box as secretly-knowing).

⋆Or believing. We use “knowing” in the loose sense of [2] here.
⋆This generalises to any finite set of agents but we consider the simplest case of two agents in this

abstract for brevity.
⋆This of course does not capture all aspects of secretly-knowing – see [5] for discussion.
⋆Sound and complete: contains a formula iff it is valid (true inn all states in all models).
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A common distinction between knowledge andbelief is that for the former, reflexivity of
accessibility is often assumed. We get a corresponding result also in that case, by adding
axiom (T): □φ→ φ.

Theorem 5. ICST is sound and complete with respect to the class of all reflexive Kripke
models.
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ACω(X) asserts that given ∅ ̸= An ⊆ X there are an ∈ An for all n ∈ ω, while
DC(X) asserts that given R ⊇ X × X such that ∀x∃y(x R y) there are (an)n∈ω such
that an R an+1 for all n ∈ ω. It is well known that DC, that is ∀X DC(X), implies ACω,
that is ∀X ACω(X). But does this implication holds uniformly? In other words: does
DC(X) ⇒ ACω(X) for all X? Clearly there are many sets X for which this implication
is valid, for example X = R.

Working in ZF we prove the following.

Theorem 1. Assume ACω(R). Then DC(X)⇒ ACω(X), for all X .

Theorem 2. It is consistent with ZF that there is a set A ⊆ R such that DC(A) holds and
ACω(A) fails.

Theorem 3. DC(X) ∧ DC(Y )⇒ DC(X ∪ Y ), for all X, Y .
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Federigo Enriques, at the beginning of the last century, argued that Logic can be re-
garded as a part of Psychology ([1], p.164). Our research develops a formalized approach
to the foundations of psychoanalysis in logic, by considering a pre-logical setting, inter-
preting and integrating some views developed in psychoanalysis by Freud, Matte Blanco,
Bion and other authors. In turn, the pre-logical elements can be read as seeds for logic.

We first consider quantified formulae on non-extensional domains termed infinite sin-
gletons [10], that corresponds to the thing-presentations of objects, a concept at the basis
of Freudian theorization, see [2], 1891. Thing presentations are non-verbal open repre-
sentations of objects operated by the Unconscious, which can access consciousness only
when closed by words. The model of infinite singletons can grasp the logical features of
the structural Unconscious, a negationless environment of infinite mental objects, charac-
terized by Freud in The Interpretation of Dreams [3], then logically interpreted by Matte
Blanco in [6].

Then we consider the modal operator of S4, derived by abstracting with respect to the
collection of infinite singletons which refer to the same objects, and characterizable by an
infinite singleton itself. It can attribute a sharp yet undefined value to an object, namely
is situated in between open and closed presentations [11]. Further, one can assume that
some form of "priming" for the process of abstraction can be considered, as in [7]. A
set of different independent possibilities for priming are characterized [12], as a basis for
our conscious judgements from their Unconscious origins. Beyond a neuter form, that
corresponds to no priming, one has a positive, a negative and an impossible priming, the
last associated to the failure of thing-presentations. The two others are the assertive and
the negative finite views of the original infinite neuter modality. In logic, one can see
that the negative view of the modality, first described in [5], gives rise to negation and
non contradiction, and that the original impossible modality is overcome when expressed
by the dual of necessity, namely possibility. The last confines singletons to their usual
role and makes the usual finite and infinite sets possible. The modal operators, then, are
the key to shift from the mode of the Unconscious to rational thinking, a view consistent
with the the moving from the First to the Second Topic in Freud, introducing a normative
instance moderating the encounter of the psychic dimension with the external reality, see
[4].

The method adopted to introduce the logical objects we need is taken from Basic
Logic [9], considering its reflection principle and its symmetry theorem. The model has
been originally developed in physics, as a model of quantum states, conceived as infinite
singletons; the modal operator of S4 is then introduced as an abstract spin projector.
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Overall, our proposal mirrors Gödel’s idea that finiteness leads to incompleteness,
and that completeness requires the integration of means not yet included in formal logic.
In particular we think that our proposal reinterprets in terms of qubits Gödel’s modal
interpretation of intuitionistic logic, [8], that is infinite-valued, as he also proved. In it,
intuitionistic logic is produced by addition, the addition of the modality to classical propo-
sitional logic, namely the logic of bits. With qubits, a logical environment, preserving an
infinite aspect, can be, rather, carved out, from the infinite modal pre-logic, in accordance
with Matte Blanco’s idea that the primary mode of sets, that is of the objects of the mind,
is infinite and not finite, and that bivalence is present only in consciousness.
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In [2] K. Schlechta proposed a predicate calculus based on the idea of default quan-
tifier, which we will denote by ∇. Intuitively, its function is to describe when a certain
property holds in the majority of cases; in other words∇xP (x) can be interpreted as “for
the majority of x, P (x) holds”. The aim of Schlechta is formalizing what he calls “default
reasoning”; this means that a property is true when it holds most of the time, according to
our experience.

The language considered by Schlechta is any first order language endowed with the
symbol ∇ and the well-formulas are all the ones of first order logic together with all the
formulas in the form ∇xϕ(x) where ϕ is itself a well-formed formula an x is a variable.
In order to define the concept of model of such a language, Schlechta encounters the
necessity of formalizing what is meant by majority of cases; this is fulfilled introducing
the concept of N-system on a given set. Intuitively, an N-system on a set can be seen as
a collection of big subset of the chosen universe; to accomplish this purpose, Schlechta
lists three properties that subsets in the N-system need to satisfy in order to be considered
big: supersets of big sets should be big, the universe should be a big set itself and finally
two big sets should not have empty intersection.

The concept of N-system is strictly connected to the one of model of the above lan-
guage, which is defined as a model M of the language without∇ ( according to the usual
definition of model of a language) together with an N-systemN onM . Clearly, the notion
of validity for formulas not containing∇ is defined in the canonical way, while a formula
of the form ∇xϕ(x) is said to be valid in the model if there exists a set A ∈ N such that
ϕ(a) is a valid formula for every a ∈ A.

After that, Schlechta introduces an axiomatization for his predicate calculus endowing
any axiomatization of first order logic with new axiom schemata and then he proves some
soundness and completeness results.

Our aim is to describe an algebraic counterpart of this predicate calculus in the same
fashion as monadic algebras are for classical predicate calculus. The natural way to pro-
ceed is to follow the same path as in the classical paper by Halmos [1]; without entering
into details, it is possible to define a variety of algebras (which will be of course the vari-
ety of Boolean algebras with one additional unary operation) that is exactly the algebraic
counterpart of the monadic fragment of a fragment of Schlechta’s predicate calculus. In
fact, Schlechta’s calculus contains not only the default quantifier but also the classical
quantifiers; we have decided to consider only the default quantifier in order to avoid un-
necessary complications.

In particular we define a Boolean algebra with default quantifier as a Boolean alge-
bra D endowed with a unary operator∇ satisfying the following properties:

1. ∇1 = 1;

2. ∇(x ∨ y) ≥ ∇x ∨∇y;
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3. ∇x ∧∇¬x = 0;

4. ∇(x ∧∇y) = ∇x ∧∇y;

5. ∇(x ∨∇y) = ∇x ∨∇y.

From the definition it is clear that Boolean algebras with default quantifier form a
variety, which we denote by D.

After having introduced such a variety, we focus on the study of some algebraic prop-
erties of Boolean algebras with default quantifier; in particular we firstly prove some
results about the nature of the image of the default quantifier ∇, which turns out to be
a Boolean subalgebra of D, and then we investigate how ∇ acts on each element of the
algebra, once fixed the subalgebra C that is its image. We’ll prove that the action of∇ on
each element is closely related to the nature of the set N = {x ∈ D : ∇x = 1}: specifi-
cally, we look for necessary and sufficient conditions for compatibility between N and C,
where by compatibility we mean that it is actually possible to define a default quantifier
∇ on D such that N is the set of elements whose∇ is equal to 1 and C is the image of∇.
Finally we show that the action of ∇ on each element of D is uniquely determined once
fixed C and N in such a way that they are compatible.

After that we focus on the study of the congruence lattice Con(D) of a generic
Boolean algebra with default quantifier D; if we denote by Fil(D) the lattice of the
filters of D which are also closed under ∇, it turns out that Con(D) is isomorphic to a
sublattice of Fil(D). This allows us to investigate in which cases D is simple or sub-
directly irreducible; such an analysis results in two theorems containing necessary and
sufficient conditions for a Boolean algebra with default quantifier to be either simple or
subdirectly irreducible but not simple. Those results lead to some straightforward con-
sequences: we notice that there are Boolean algebras with default quantifier which are
subdirectly irreducible but not simple, hence the variety D is not semisimple; further-
more we provide an example of simple Boolean algebra with default quantifier that has a
non-simple subalgebra, allowing us to state that D does not have the CEP property.

Moreover, we study the structure of the initial part of the lattice of subvarieties of D;
this will be done through several applications of Jónsson’s Lemma in its finite version: we
start by studying the varieties generated by the smallest subdirectly irreducible Boolean
algebras with default quantifier and then we’ll proceed moving on to bigger ones. Clearly,
the variety B of Boolean algebras will be a subvariety of D.

It is also worth to notice that the default quantifier∇ can be seen as a modal operator,
where the modality is interpreted as “valid in the most of cases”. It turns out that the
modal logic that the default quantifier gives rise to is not a normal one; it could therefore
be interesting to study its neighborhood semantics and investigate how it is related to the
modal logic systems that are already known.
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A residuated poset is a structure A,≤, ·, , , 1 where A,≤ is a poset and A, ·, 1 is a
monoid such that the residuation law x · y ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z holds.
A residuated poset is balanced if it satisfies the identity x\x ≈ x/x. By generalizing the
well-known construction of Płonka sums, we show that a specific class of balanced residu-
ated posets can be decomposed into such a sum indexed by the set of positive idempotent
elements. Conversely, given a semilattice direct system of residuated posets equipped
with two families of maps (instead of one, as in the usual case), we construct a residuated
poset based on the disjoint union of their domains. We apply this approach to provide a
structural description of some varieties of residuated lattices and relation algebras.
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Well orders play a crucial role in many areas of mathematics, not last mathematical
logic; therefore, closure properties for well orders deserve a special attention. In this view,
a relevant topic is given by the study of Well-Ordering Principles, WOP’s. Generally
speaking, denoting with Ω the set of countable ordinals and with WO the property of
being a well-order, given an ordinal function g : Ω→ Ω the corresponding Well-Ordering
Principle, WOP(g), amounts to:

∀X [WO(X)→WO(g(X))],

namely WOP(g) asserts that g preserves well orderedness.
Many WOP’s have been considered in reverse mathematics. Using lambda notation,

i.e. λX.α(X) denotes the ordinal function sending X to α(X) (with α(X) an ordinal term
containing X), the following equivalences hold:

Theorem 1. Over RCA0:

• ACA0 is equivalent to WOP(λX.ωX) [Girard [3]];
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• ACA+
0 is equivalent to WOP(λX.εX) [Marcone and Montalbán [5]];

• ATR0 is equivalent to WOP(λX.φX0) [Friedman, Montalbán and Weiermann];

• ATR+
0 is equivalent to WOP(λX.ΓX) [Rathjen [6]].

Lately Arai [1, 2] studied the general behaviour of WOP’s; for a normal function g,
namely an ordinal function which is strictly increasing and continuous, and its derivative
g′, i.e. the ordinal function enumerating the fixed points of g, Arai gave the following
characterizations.

Theorem 2 (Arai [2]). |ACA0 + WOP(g)| = g′(0) = min{α |g(α) = α}.

Theorem 3 (Arai [2]). Over ACA0, the following are equivalent:

• WOP(g′);

• (WOP(g))+;

where (WOP(g))+ means that every set is contained in a countable coded ω-model of
ACA0 + WOP(g), see [2, Definition 2] for a detailed definition.

We have recently extended theor:Arai [3] to a larger class of ordinal functions. More
precisely, we dropped the normality condition for g requiring only the following two
hypotheses:

1. g is weakly increasing, i.e. α⩽β ⇒ g(α)⩽g(β);

2. g′(0) is an epsilon number, i.e. ωg′(0) = g′(0).

Since g does not need to be a normal function, and therefore may lack fixed points, by
g′(0) we denote the first ordinal closed under g, namely g′(0) := min{α > 0 | ∀β <
α g(β)<g(α)}.

As an application of this novel extension, we compute the proof-theoretic ordinals of
the following two WOP’s:

• |ACA0 + WOP(λX.ϑ(Ωω · X)| = ϑ(Ωω+1);

• |ACA0 + WOP(λX. supn ϑ(Ω
n · X)| = ϑ(Ωω + ω);

where ϑ is a so-called collapsing function [7].
The two previous WOP’s stem from the ordinal analysis of two different versions of

Kruskal’s theorem, a celebrated result in the theory of well quasi-orders. More precisely,
for a wqo Q let T (Q) be the set of finite trees with labels in Q and T n(Q) be the set of
finite trees with labels in Q and branching degree less or equal to n (i.e. every node in
a tree has at most n successors); then, denoting with KTℓ(ω) standard Kruskal’s theorem
(“if Q is wqo then T (Q) is a wqo") and with KTℓ(n) the bounded version (“if Q is wqo
then T n(Q) is a wqo"), the following equivalences hold [3]:

• ACA0 ⊢ KTℓ(ω)←→WOP(λX.ϑ(Ωω · X));
• ACA0 ⊢ ∀nKTℓ(n)←→WOP(λX. supn ϑ(Ω

n · X)).
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These equivalences, combined with the previous computations regarding proof-theoretic
ordinals for WOP’s, allow to easily calculate the proof-theoretic ordinals of KTℓ(ω) and
∀nKTℓ(n). We briefly recall that the unlabelled case was treated by Rathjen and Weier-
mann [7] who obtained the following result:

ACA0 ⊢ KT(ω)←→ ∀nKT(n)←→ ϑ(Ωω) .

In the same spirit, we studied the well-ordering principles and the proof-theoretic
ordinals corresponding to the following closure properties for well quasi-orders:

• ∀Q,∀n [Qwqo→ Qn wqo], with Qn := Q× · · · ×Q;

• ∀Q,∀n [Qwqo→ n·Qwqo], with n·Q := Q+ · · ·+Q.

The main goal of our research is double:

• compute the proof-theoretic ordinals of relevant well-ordering principles;

• draw a thorough picture, in term of WOP’s, of the most common closure properties
for well quasi-orders.

References

[1] T. Arai. Derivatives of normal functions and ω-models. Archive for mathematical
logic, 57(5-6):649-664, 2017.

[2] T. Arai. Proof-theoretic strengths of the well-ordering principles. Archive for math-
ematical logic,59(3-4):257-275, 2020.

[3] G. Buriola. Proof-Theoretical Aspects of Well Quasi-Orders and Phase Transitions
in Arithmetical Provability. PhD thesis, Dep. of Mathematics, University of Trento,
Italy, 2024.

[4] J. Girard. Proof theory and logical complexity. Studies in proof theory. Bibliopolis,
Napoli, 1987.

[5] A. Marcone and A. Montalbán. The Veblen functions for computability theorists.
The Journal of symbolic logic, 76(2):575-602, 2011.

[6] M. Rathjen. ω-models and well-ordering principles. In N. Tennant, editor, Founda-
tional Adventures: Essays in Honor of Harvey M. Friedman, pages 179-212. College
Publications, London, 2014.

[7] M. Rathjen and A. Weiermann. Proof-theoretic investigations on Kruskal’s theorem.
Annals of Pure and Applied Logic, 60:49-88, 1993.

28



A calculus for modal compact Hausdorff spaces
Nick Bezhanishvili1, Luca Carai2, Silvio Ghilardi2, Zhiguang Zhao3

1Institute for Logic, Language and Computation. University of Amsterdam, The Netherlands.
n.bezhanishvili@uva.nl

2Department of Mathematics. University of Milan, Italy.
luca.carai.uni@gmail.com

silvio.ghilardi@unimi.it
3 School of Mathematics and Statistics. Taishan University, China.

zhaozhiguang23@gmail.com

SPEAKER: Luca Carai.

Dualities between algebras and topological spaces provide a crucial tool in the study
of logics, algebras, and topologies. The groundbreaking work of Stone established the
duality between Boolean algebras and Stone spaces, paving the way for numerous subse-
quent studies on dualities. Among the generalizations of Stone duality, there is de Vries
duality [4] between compact Hausdorff spaces and de Vries algebras, which are com-
plete Boolean algebras enriched with a binary relation satisfying some specific properties.
From a logical perspective, de Vries algebras have been studied in [2, 5], where the strict
symmetric implication calculus S2IC is defined by extending the classical propositional
calculus with a binary connective called strict implication, and it is shown that S2IC is
strongly sound and complete with respect to de Vries algebras. This yields that S2IC is
also sound and complete with respect to compact Hausdorff spaces.

Modal spaces are Stone spaces endowed with a relationR satisfying some ‘continuity’
conditions. These spaces play a fundamental role in the study of modal algebras, also
known as Boolean algebras with operators, because Stone duality generalizes to Jónsson-
Tarski duality between modal spaces and modal algebras. In [1] modal compact Hausdorff
spaces are introduced as the compact Hausdorff generalization of modal spaces:

Definition 1. A modal compact Hausdorff space is a pair (X,R) consisting of a compact
Hausdorff space X and a binary relation R on X such that

1. R[x] is closed for each x ∈ X;

2. R−1[F ] is closed for each closed F ⊆ X;

3. R−1[U ] is open for each open U ⊆ X .

In [1] it is proved that de Vries duality generalizes to a duality between modal compact
Hausdorff spaces and upper continuous modal de Vries algebras. Developing a sound and
complete calculus for modal compact Hausdorff spaces was left as an open problem in
[1].

We solve this problem by introducing the calculus MS2IC. This calculus is obtained
by extending the strict symmetric implication calculus S2IC with a modal operator □ and
adding to S2IC specific axioms and a Π2-rule that expresses upper continuity.

Theorem 2. MS2IC is strongly sound and complete with respect to the class of modal
compact Hausdorff spaces.
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Π2-rules are non-standard inference rules that naturally possess ∀∃ counterparts, and
played an important role in the axiomatization of de Vries algebras using the strict sym-
metric implication calculus S2IC in [2, 5]. However, in the same works it was shown that
these rules were, in fact, admissible in the calculus, and hence they could be omitted in
the axiomatization of S2IC. This observation generates the question of whether Π2-rules
are indeed necessary for the axiomatization of MS2IC.

We show that the Π2-rule expressing upper continuity is admissible in MS2IC. Our ad-
missibility proof deviates from the general methods introduced in [2, 5] as our framework
lacks the amalgamation/interpolation properties, essential in those methods. Instead, we
obtain the proof by first developing a relational semantics for MS2IC and subsequently
applying bisimulation expansions.

The Kripke frames providing the relational semantics for MS2IC are triples (X,T, S)
consisting of a set X together with a ternary relation T and a binary relation S. The
relation T is used to interpret the strict implication, while S interprets the modality □.
The canonicity of the axioms of MS2IC allows us to establish the following.

Theorem 3. MS2IC is Kripke complete.

The results presented in this talk can be found in the preprint [3].
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Definition 1. Given topological spaces X,X ′, Y, Y ′, we say that a function f : X → Y
continuously reduces to a function g : X ′ → Y ′ if there are two continuous functions
σ : X → X ′ and τ : im(g ◦ σ)→ im(f) such that f = τ ◦ g ◦ σ. We also say that the pair
(σ, τ) continuously reduces, or simply reduces, f to g.

σ

τ

f g≤

Continuous reducibility is a transitive and reflexive relation, which makes it a quasi-
order. As usual with quasi-orders, there is an induced equivalence relation: we write
f ≡ g when both f ≤ g and g ≤ f hold, and we say that f and g are continuously
equivalent. We also denote by f < g the relation f ≤ g and f ̸≥ g, and we say that f and
g are incomparable when both f ̸≤ g and g ̸≤ f .

An antichain is a set of pairwise incomparable elements, and an infinite strictly de-
scending chain is a sequence (fn)n∈N satisfying fn+1 < fn for all n ∈ N. A quasi-order is
called a well-quasi-order if it has no infinite antichains and no infinite descending chains.

A topological space is Polish if it is separable and completely metrizable, and zero-
dimensional if it has a basis consisting of clopen sets, that is sets that are both open and
closed. A topological space is analytic if it is a continuous image of a Polish space.

Our main result is the following theorem.
Continuous reducibility is a well-quasi-order on the class of continuous functions from

an analytic zero-dimensional space to a separable metrizable space.
The analyticity hypothesis in Theorem is only used to show that all such continuous

functions with uncountable image are equivalent to the identity function on the Cantor
space. In fact, we prove

Continuous reducibility is a well-quasi-order on the class of continuous functions from
a separable metrizable zero-dimensional space to a countable metrizable space.

The above theorem is proved following a dichotomy which is reminiscent of the case
of spaces. Recall that a space is scattered if any of its non-empty subsets contains an
isolated point. We suggest to make the following definition: a function f between topo-
logical spaces is scattered if any non-empty subset of its domain contains an open set
on which f is constant. Every continuous function with a scattered image is scattered,
but there are scattered continuous functions whose image (take for example any bijection
: N → Q) or domain (a constant function on Q) is not scattered. While the space Q of
rationals is universal for countable metrizable spaces, any non scattered metrizable space
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contains a copy of Q. We show analogous results for functions with idQ in the role of
Q, thereby establishing that, up to continuous equivalence, idQ is the only non scattered
continuous function from a metric space to a countable metric space.

With this in mind, the main challenge in proving Theorem concerns the scattered
functions. For the purpose of this paper, we therefore introduce the class of continuous
functions f : X → Y such that f is scattered,X is separable zero-dimensional metrizable
and Y is countable metrizable. The result at the heart of our main theorem can then be
stated as follows.

Continuous reducibility is a well-quasi-order on the class .
We thus in particular answer positively [1, Question 5.5], as then conjectured.

This is a joint work with Yann Pequignot.
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Introduction

For a model M of Peano arithmetic (PA), a truth class is a subset X of M -sentences⋆

which makes true all Tarski-style compositional truth axioms.⋆

It is known that a truth class can be constructed for an arbitrary countable recursively
saturated model of PA. However, the original proof of this theorem (see [3]) using the
so-called ‘technique of approximations’ was difficult to follow for many readers, with the
machinery of approximations being one of the main stumbling blocks. Accordingly, the
question has been asked whether the result can be proved by purely classical methods.
One successful attempt in this direction can be found in [2], where classical techniques of
formal semantics are employed.

On the other hand, in [1] the theorem was proved by the classical techniques of proof
theory, namely, by cut elimination. Coupled with Enayat and Visser’s construction, this
makes the field of truth classes accessible to the logicians whose primary interest is either
model theory or proof theory.

However, it was not obvious how to generalize the techniques from [1] in order to
permit construction of stronger truth classes. In the proposed talk we fill in this gap. Our

⋆An M -sentence is an objects a ∈ M such that M |= Sent(a), where Sent(a) is an arithmetical
predicate expressing that a is an arithmetical sentence.

⋆Thus, for example, we would have: (M,X) |= ∀φ,ψT (φ ∧ ψ) ≡ T (φ) ∧ T (ψ), with the predicate
“T (x)′′ interpreted by X .
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main objective is to present a construction of a strong truth class, containing all instances
of schemata derivable in Peano arithmetic. In our proof the notion of approximation
plays a crucial role; however, unlike in [3], we develop approximations as a purely proof-
theoretic technique, easily accessible to researches versed in classical proof theory. In this
way, the versatility of proof-theoretic approach to truth is vindicated.

Outline

We work with a fixed countable and recursively saturated modelM of PA. We start by
presenting a proof system called ‘M -logic’ (ML in short). Intuitively, ML permits us to
process arbitrary sentences in the sense ofM , including the nonstandard ones. The system
is described externally (not in the model) in the form of a classical sequent calculus. We
use the notation ‘Γ ⇒ ∆’ when referring to sequents. We shall always assume that both
Γ and ∆ are externally finite sequences of M -sentences. Unlike in Gentzen’s original
system, we do not admit formulas with free variables in the sequents. This deficiency is
compensated by the presence of infinitary rules for quantifiers in ML.⋆ In addition, ML
contains truth rules, which guarantee that every true literal (atomic arithmetical sentence
or its negation) is a theorem of ML.

Proofs in ML are trees of finite height, where the height of a proof is the length of its
maximal path. By definition, trees with no maximal path do not qualify as proofs in ML.

The proof of the following lemma can be found in [1].

Lemma 1. Let M |= I∆0 + exp be countable and recursively saturated. If ML is
consistent, then there is a truth class in M , which contains all theorems of ML.

It is important that the lemma remains true when ML is enriched with additional
initial sequents (axioms). Now we introduce a notion of a schema.

Definition 2 (Schema Template). An L template (for a schema) is given by an L ∪
{P}-sentence τ(P ) obtained by augmenting L with a n-ary predicate P (x1, . . . , xn).
An L-sentence is an instance of τ if it is of the form ∀vτ [ψ(t1, . . . , tn, v)/P ], where
τ [ψ(t1, . . . , tn, v)/P ] is the result of substituting all subformulae of the form P (t1, . . . , tn)
with ψ(t1, . . . , tn, v), renaming bound variables as necessary so to avoid clashes.

Given a LPA-template τ , let Sch(PA) := {τ | proves all LPA-instances of τ}.

Definition 3. For τ1 . . . τn ∈ Sch(PA), we define the system MLSτ1...τn as ML with
additional initial sequents of the form ∅ ⇒ φ, such that φ is an instance of one of the
indicated schemas.

Our main result is that for all τ1 . . . τn ∈ Sch(PA), MLSτ1...τn is consistent. By
Lemma 1 it follows that recursively saturated models expand to models with a truth class
containing all substitutions of finitely many schemata. Then an easy compactness argu-
ment shows that a truth theory containing Tarskian compositional axiom, enriched with
infinitely many axioms of the form ‘For every ψ, if ψ is an instance of τ , then T (ψ)’ (for
every τ ∈ Sch(PA)) is a conservative extension of PA.

⋆For example, the rule ∃-left has the form: from the infinite set of assumptions {φ(a),Γ⇒ ∆ : a ∈M},
infer: ∃xφ(x),Γ⇒ ∆.

33



References
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Categorical tools are indispensable to define models of logical systems formulated in
the field of type theory. In particular, Benabou’s fibrations and indexed categories (see
[1]) had been successfully employed to model dependent type theories used as founda-
tions of constructive mathematics, such as Coquand’s Calculus of Constructions (CoC),
Martin-Löf’s type theory (MLTT) and the more recent Voevodsky’s Homotopy Type
Theory (HoTT). The appealing aspect of type-theoretic foundations is the possibility to
be formalized in proof assistants and perform computer verification of proofs.

In this talk we address the problem of modelling the two-level structure of the Mini-
malist Foundation (MF), ideated by the second author and Sambin in [10] and fully for-
malized in [5]. Indeed, MF offers a predicative constructive mathematical environment
with minimal assumptions, which is compatible with most relevant constructive founda-
tions including CoC, MLTT, HoTT, Aczel’s CZF and the general theory of elementary
toposes.

And, such a minimality of MF was made possible by structuring MF as a two-level
structure consisting of an intensional level mTT formulated as a dependent type the-
ory suitable for computer formalization, an extensional level emTT formulated as a
many-sorted logic closer to the traditional mathematics language, and an interpretation of
emTT in mTT through a quotient model (see [5]).

The long term goal of our research would be to export such as a minimality from the
formal syntactic level to a model theoretic one.

While for interpreting both levels of MF we can adapt fibrational tools used to model
MLTT thanks to results in [4], it is still an open problem to describe categorically the
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interpretation of the extensional level emTT in the quotient model of so called “setoids"
within the intensional level mTT in [5].

More in detail, while the whole quotient model of MF can be described categorically
as a suitable elementary quotient completion introduced in [9], it is an open problem how
to describe the structure of dependent setoids a’ la Bishop used to model set families of
emTT in mTT. The problem boils down to lift the indexed categories interpreting the
various types of mTT as a structure of the codomain fibration of the elementary quotient
completion describing the quotient model of MF.

In this talk, we will discuss how to obtain such a categorical description using the
descent theory in [2, 3] so that we can fully enrich an elementary quotient completion
built out of a fibrational model mTT into a fibrational model of emTT.

Other relevant examples of such fibrations obtained using descents can be built both
out of the predicative version of Hyland’s Effective topos Eff in [6] (within Feferman’s
theory of non-iterative fixpoints) and a constructive and predicative version of Eff with
CZF+ REA based on the work in [6] and [8].

In this way we reach a categorical description of how proofs in MF can be turn into
programs.
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This talk combines ideas from computable structure theory inductive inference and
descriptive set theory to study learning of families of structures. The framework we use
was defined in a series of papers by Bazhenov, Fokina, Kötzing, and San Mauro, and
models the following scenario: Given a family of structures K, a learner receives more
and more information about the atomic diagram of a copy of some A ∈ K and, at each
stage, is required to output a conjecture about the isomorphism type of such a structure.
We say that K is Ex-learnable if there exists a learner that stabilizes to the correct con-
jecture after finitely many steps.

Recently, together with Bazhenov and San Mauro, we gave a descriptive set-theoretic
characterization of Ex-learning. Namely, we showed that a family of structures is Ex-
learnable if and only if the corresponding isomorphism problem continuously reduces to
E0, the equivalence relation of eventual agreement on infinite binary sequences. Replac-
ingE0 with other equivalence relations, one obtains a hierarchy to rank such isomorphism
problems. That is, a family of structures K is E-learnable, for an equivalence relation E,
if there is a continuous reduction from the isomorphism problem associated with K to E.

To get a better understanding of when a family of structures is E-learnable it is useful
to provide a model-theoretic characterization of E-learnability. Some characterizations
are already present in the literature. Here we show that a family of structures K is E-
learnable for E being the (iteration of the) Friedman-Stanley jump of equality on natural
numbers or on Cantor space if and only if the inclusion relation of the Σinf

n -theories is
a partial order on K. We also show that other learning criteria coming from the classi-
cal setting of inductive inference of formal languages or recursive functions have a nice
model-theoretic characterization.

This talk collects joint works with Bazhenov, Jain, Marcone, San Mauro and Stephan.
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It is well known that most foundations for Bishop’s constructive mathematics are not
compatible with a classical predicative development of analysis as put forward by Weyl
in Das Kontinuum [8]. Among the most popular systems proposed as foundations for
Bishop’s constructive mathematics there are Aczel’s constructive set theory CZF and
Martin-Löf Type Theory MLTT [4]. More recently, a development of the latter that is
known as Homotopy Type Theory HoTT [7] has gained much attention, especially for its
applications to synthetic homotopy theory and higher categories.
We first discuss why these systems are not compatible with classical predicative theories.
Indeed, when they are extended with classical logic, they become impredicative. Hence,
they cannot be equiconsistent with their classical counterparts.
Our analysis will highlight the role played by the rule of unique choice in the derivation
of these incompatibility results. We will show that already the weaker system of Heyt-
ing Arithmetic in all finite types when extended with the law of excluded middle and a
weak form of the rule of unique choice, is enough strong to interpret second-order Peano
arithmetic, that is an impredicative theory. Then this result can be extended to the more
powerful systems mentioned above.
We argue that a possible way-out could be provided by the two-level system known as
Minimalist Foundation MF [3, 5].

MF includes exponentiation for function as λ-terms, while functional relations do not
necessarily form a set. Furthermore, choice principles are not internally valid in MF [2].
We show that even the (weak) rule of unique choice, which identifies functional relations
with functions as λ-terms, is not valid in MF. This restriction suggests the need for a
point-free development of topology, as advocated by Martin-Löf and Sambin [6], and
analysis [5]. In this perspective, we will assess the status of various constructions of real
numbers in MF in comparison to those in other constructive systems such as CZF, MLTT
and HoTT. Ultimately, we will contend that MF promises to be a natural crossroads
between Bishop’s constructive mathematics and Weyl’s classical predicativity.
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Abstractionist theories in philosophy of mathematics are systems composed by a logi-
cal theory augmented with an abstraction principle (AP), of form: ∀X∀Y (@X = @Y )↔
E(X, Y )⋆ – that introduces, namely rules and implicitly defines, a term-forming operator
@ by means of an equivalence relation E. As is well-known, the seminal abstractionist
program, Frege’s Logicism, failed⋆: Russell’s Paradox proved its inconsistency and, a
fortiori, its non-logicality. In the last century, both the issue of consistency and the is-
sue of logicality have been resumed in the abstractionist debate (cf. [12], [7], [1], [4],
[3]). More precisely, on the one side, different revisions of Frege’s original system have
been proposed in order to avoid Russell’s Paradox and to obtain a consistent system that
is strong enough to derive (at least, relevant portion of) Peano Arithmetic. On the other
side, given a semantical definition of logicality as permutation invariance, some abstrac-
tion principles have been proved to be logical ([1], [4]).

Nevertheless, many concerns are still open. Particularly, regarding the preliminary
condition of consistency, the ways out of Russell’s Paradox proposed so far does not
precisely mirror a corresponding explanation of the origin of the contradiction and often
imply a weakening of the hoped strength of the theory (cf. [11], [13], [6])⋆; regarding the

⋆In the rest of the paper, I’ll adopt this axiomatic version of AP. Given full Comprehension Axiom
Schema (that will be assumed in the systems that we’ll investigate), it is equivalent to the schematic form:
@x.α(x) = @x.β(x)↔ E(α(x), β(x)).

⋆It was proposed with the foundational purpose to derive arithmetical laws as logical theorems and to
define arithmetical expressions by logical terms.

⋆In [5] and [2], second-order Peano Axioms are recovered but by appealing to stronger logical resources
– i.e. double-sorted variables
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issue of logicality, an undesired dilemma overshadows the abovementioned results: pre-
cisely in case of logical (i.e. permutation invariant) abstraction principles, their implicit
definienda turn out to be non logical ([1]) – so preventing a full achievement of Logicist
goal.

My preliminary aim consists in arguing that these – apparent unrelated –problems
have a common source in some unquestioned assumptions of Freges’ project (inherited
also by the following abstractionist programs). I argue that such assumptions are part of
what we can call the Traditional view of abstraction, that includes the choice of classical
logic as the base theory, with the related semantical consequence of full referentiality of
the vocabulary, and the choice of a so-called Canonical interpretation function for all the
(both primitive and defined) expressions of the language.

In the rest of the talk, I show that by renouncing to one or both of these problematic
assumptions we can recover consistency and/or logicality. More precisely, I propose a
double revision of Frege’s Logicist program: on the one side, weakening Canonical inter-
pretation function for the implicitly defined (abstract) expressions of the vocabulary (cf.
[3]), I prove that any consistent revision of BLV turns out to be logical (i.e. permutation
invariant); on the other side, I show that such an arbitrary interpretation, on a (negative)
free logic background, allows us to identify a restriction of BLV, able to precisely exclude
the paradoxical concepts, namely to avoid Russell’s Paradox, but, at the same time, to
preserve the derivational strength necessary to derive second-order Peano axioms. This
means that this system – that we’ll call Arbitrary Logicism, precisely renouncing to the
Traditional assumptions mentioned above, is able to recover both Frege’s goals of consis-
tency and logicality.

The logical part of the language of Arbitrary Logicism, LF , includes denumerably
many first-order variables (x, y, z, ...), denumerably many second-order variables (X, Y, Z, ...),
logical connectives (¬, →) and a first-order existential quantifier (∃)⋆. We can also use-
fully define a predicative monadic constant (E!), whose extension is equal to the range of
identity: E!a =def ∃x(x = a). The only non-logical primitive symbol is the term-forming
operator ϵ which applies to monadic second-order variables to produce complex singular
terms (ϵ(X)). The theory involves, as its logical part, the axioms and inference rules of
non-inclusive negative free logic with identity (NF=):

NF1) ∀vα→ (E!t→ α(t/v));

NF2) ∃vE!v;

NF3) s = t→ (α→ α(t//s));

NF4) ∀v(v = v);

NF5) Pτ1, ..., τn → E!τi (with 1 ≤ i ≤ n);

∀I): E!a...ϕ(a/x) ⊢ ∀xϕ;

∀E): ∀xϕ,E!a ⊢ ϕ(a/x);

∃I): ϕ(a/x), E!a ⊢ ∃xϕ;

⋆We can also define the other connectives and the universal ∀xAx =def ¬∃x¬Ax.
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∃E): ϕ(a/x), E!a...ψ,∃xϕ ⊢ ψ, where a is a new individual constant which does not
occur in ϕ and ψ.

Additionally, the theory involves an axiom-schema of universal instantiation for second-
order variables (∀Xϕ(X) → ϕ(Y )), a rule of universal generalisation (GEN), a second-
order comprehension axiom schema (CA: ∃X∀x(Xx↔ α)) and modus ponens (MP)⋆.

The abstraction principle that characterizes this theory is obtained by weakening BLVa
(arbitrarily interpreted) by means of the condition of Permutation Invariance (cf. [1], [3]).

W-BLV: ∀F∀G(ϵF = ϵG↔ ∀x(Fx↔ Gx) ∧ ϵ(π(F )) = π(ϵF ))

As well known, ϵ operator (as defined by standard BLV), also arbitrarily interpreted,
is not Permutation Invariant – because, roughly speaking, by being inconsistent is unable
to define or rule any function. We can emphasize that, given an arbitrary interpretation,
Permutation Invariance fails precisely for the argument that determines its inconsistency.
In other words, as can be pointed out for other consistent revisions of BLV, in any case
in which it is safely restricted, ϵ turns out to satisfy Permutation Invariance, namely it is
such that π(ϵ) = ϵ, i.e. ∀X∀y(ϵX = y ↔ ϵ(π(X)) = π(y)). Then, the second conjunct
of the right-hand side of W-BLV requires that – no matter which object y is identical to
ϵF – ϵ satisfies Permutation Invariance for the considered arguments⋆.

Accordingly, W-BLV, as a bi-conditional, turns out to be satisfied by any concept in-
stantiating the universal quantifier. On the one side, given an arbitrary interpretation of the
abstraction operator, for any concept different from Russellian concept (R), π(ϵ) = ϵ. On
the other side, we can consider Russell’s Paradox as a reductio ad absurdum of the alleged
truth of both the side of the bi-conditional for the concept R: the contradiction proves that
ϵR – as legitimately admitted on a free logical background – does not exists, namely it is
a term devoid of denotation; accordingly, it is not identical to itself (so, falsifying the left-
hand side of W-BLV) and, even if R, as any other concept, is co-extensional with itself, it
falsifies Permutation Invariance of the operator⋆. Accordingly, also the right-hand side of
W-BLV is false and also the instance of the bi-conditional for the concept R is verified.

Such a restricted version of W-BLV allow us to derive a corresponding restricted ver-
sion of Hume’s Principle. Nevertheless, the same restriction, on HP, is trivially satisfied
by any instantiation, so it actually does not represent a weakening of the principle itself
and allow us to derive the main arithmetical results, including Frege’s Theorem.

⋆From these axioms we can also derive the following theorems: T1) ∀xE!x; T2) t = t ↔ E!t; T3)
(¬E!s ∧ ¬E!t)→ (α→ α(t//s)).

⋆This revision of BLV (particularly of BLVa) is featured by a restriction that, respect to many other
(syntactical ones), is expressible into the language. Indeed, the permutation π of the operator or of the
concepts mentioned in the right-hand side of the bi-conditional can be defined as abbreviations of the
effects of any first-order bi-jective function f: D1 → D1 on the entities (sets, relations or functions) further
up in the type hierarchy.

⋆This last claim follows from the definition of π and the result of non-existence of ϵR: on the one side,
ϵ(π(R)) = ϵ({π(x)|x ∈ R}) = ϵ(X) – where X is any other concept (based on π); on the other side,
π(ϵR), given that ϵR is not denoting, is another well-formed term without denotation; then, the identity
between ϵX (for any X that is obtained by means of a permutation of R) and the empty term π(ϵR) is false.
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LetM be a model of Peano Arithmetic and n ∈ M. We analyze the quotient rings
M/nM from a model theoretic point of view, see [2]. First of all we give a complete de-
scription in the case of n a prime power. Using the classical result due to Feferman-Vaught
[3] connecting definability in products of first order structures to Boolean algebras we ob-
tain information on the residue ring M/nM for n composite, via a formalized version
of the Chinese Remainder Theorem. A by product of our analysis of Feferman-Vaught
theorem is a characterization of those unital commutative rings which are elementary
equivalent to a “non trivial" product of commutative unital rings see [1]. This is a joint
work with A. Macintyre.
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Kripke frames (sets equipped with a binary relation) are one of the most popular se-
mantics of modal logics (see [4] for a complete overview). They form the category KFr,
where the arrows are the so called p-morphisms. Images via p-morphisms are called p-
morphic images and such images are generated subframes of their codomains. A Kripke
frame F is called locally finite if, for each p ∈ F , the smallest generated subframe con-
taining p is finite (in literature, image finite Kripke frames are better known; locally finite
Kripke frames are those Kripke frames whose transitive closure is image finite). We are
interested in KFrlf, the full subcategory of locally finite Kripke frames: this subcategory
is closed under coproducts (disjoint unions), generated subframes and p-morphic images.
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More generally, we are interested in any full subcategory C ⊆ KFrlf closed under the
same operations (all colimits in C can be built from such operations). In [2], it has been
shown that C is always comonadic over Set.

The algebraic semantics of modal logic is given by modal algebras. In the so called
Thomason duality [3], KFrlf corresponds to ProMAf, the category of profinite modal
algebras, with suitable morphisms, which is monadic over Set [2] (while image finite
Kripke frames are dual to the topological modal algebras whose underlying topology is
a Stone topology). Topological algebras and profiniteness are strictly related to classical
problems such as canonical extensions of lattice-based algebras (among them are modal
algebras). More generally, for any variety V of modal algebras generated by its finite
members Vf, the pro-completion [6] ProVf is monadic over Set. In the above duality,
ProVf corresponds to the class of locally finite Kripke frames validating the equations
defining V; the latter class has the aforementioned closure properties.

Our aim is to study categorical properties of classes of locally finite Kripke frames
dual to ProVf, for some V. In particular, we want to characterize regularity and Barr
exactness, at least under the assumption that the Kripke frames are transitive. Indeed,
it is possible to prove that: (i) such classes have all limits (being the ind-completion
of the class of finite Kripke frames belonging to it [2]) and (ii) under the assumption
of transitivity, the usual image factorization gives an (extremal epi, mono)-factorization.
Therefore, to establish regularity, it only remains to check that extremal epimorphisms
are stable under pullbacks. We present a partial solution for the reflexive and transitive
case.

From now on, we fix a full subcategory C of reflexive and transitive locally finite
Kripke frames closed under disjoint unions, generated subframes and p-morphic images.
In this case, the stability of extremal epimorphisms under pullbacks can be rephrased in
terms of the dual of the amalgamation property. A co-amalgamation for a finite family
f1, . . . , fn of epimorphisms with common codomain is a family g1, . . . , gn of epimor-
phisms with common domain, such that all the compositions figi exist and coincide. The
category C is said to satisfy the co-amalgamation property if each finite family of epimor-
phisms with common codomain has a co-amalgamation.

Co-amalgamation can be used to find out necessary conditions for regularity (follow-
ing the classification in [5, Section 6.3], see also [8, 7]): if C is regular, then it is forced to
contain Kripke frames that can be built using co-amalgamation and p-morphic images.

The construction of a binary product in C can be performed by induction following the
universal model construction, well known in the modal logic literature — see [1]. This
implies that the product of a pair of objects in C ′ is a generated subframe of the product
computed in any C containing C ′. The two products might coincide, for example, when
C ′ = C∩Poslf, where Poslf is the class of locally finite posets. If this is the case, C ′ is closed
under pullbacks in C, being always closed under equalizers. This observation allows us to
conclude that, if C is regular, then all its subclasses closed under finite products in C must
be regular; in particular, C ∩ Poslf has to be regular, too. A case analysis, based on the
co-amalgamation property, shows that exctly 8 subclasses of Poslf are regular. Therefore,
the regular C must intersect Poslf in one of the 8 classes above; applying again the co-
amalgamation property, we obtain 49 possible cases.

Barr exactness can also be studied. Similarly to what happens for regularity, given
two regular C ′ ⊆ C, with C ′ closed under finite products in C, if C is exact then C ′ is exact,
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too. In particular, C ∩ Poslf is exact if C is so. After having excluded a certain number
of cases, we show that C is exact if it only contains the empty frame, or it is one of the
following:

1. {F | ht(F) ≤ 1 & δe(F) ≤ 1} ∼= Set;

2. {F | ht(F) ≤ 1 & δe(F) ≤ 2} ∼= Z+
2 -Set;

3. {F | ht(F) ≤ 2 & wt(F) ≤ 1 & δi(F) ≤ 1 & δe(F) ≤ 1} ∼= Z×
2 -Set;

Where ht and wt give bound for cardinality of chains, resp. antichains, and δe and δi give
bound for cardinality of external, resp. internal clusters.

We are currently working on a full characterization of exactness in the reflexive and
transitive case and on a generalization of this characterization without the reflexivity con-
dition. In the latter context, exactness could be encountered in some non trivial cases. An
example is given by the class GL-Linlf of locally finite, transitive and irreflexive Kripke
frames for which the restriction of the binary relation to each rooted generated subframe
is a (irreflexive) linear order: GL-Linlf is indeed equivalent to the category of presheaves
Set(N,≤)op

.
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(CNRS, Université Paris Cité), and A. Salibra (Université Paris Cité).

Just as monoids serve to represent the composition of functions from a set A to itself,
clones [4, Chapter 2] aim at modelling the composition of functions An → A of arbi-
trary finite arity n ∈ ω. Clones hold significant importance in universal algebra, enabling
the study of varieties in a way independent of their presentation (i.e. of their similarity
type and equations). For instance, despite having different presentations, the varieties of
Boolean algebras and Boolean rings are regarded as equivalent because they share the
same clone of term-operations. Moreover, the categorical understanding of universal al-
gebra is based upon the notion of Lawvere theory [7], which is nothing but a clone in
disguise. In addition to their foundational significance, clones find applications in theo-
retical computer science. Specifically, a broad spectrum of decision problems, known as
constraint satisfaction problems, can have their computational complexity entirely classi-
fied thanks to a clone associated to them [6, 2].

However, the study of clones presents challenges, primarily due to their ω-sorted
structure, featuring a distinct sort for each finite arity. For a recent approach addressing
this challenge and treating clones as one-sorted algebras, see [3]. Here we take seriously
the suggestion put forth by Walter D. Neumann [8], and we study algebras, here labeled
ω-clones, to model the composition of functions Aω → A of fixed arity ω. This approach
enables us to gain the full expressive power of clones; however, it comes at the expense of
departing from the realm of classical (finitary) universal algebra, permitting operations of
arity ω. A ω-clone C is a set together with constants {ei : i ∈ ω} and an ω-ary operation
q satisfying three axioms:

q(ei, x0, . . . , xn, . . . ) = xi;

q(x, e0, . . . , en, . . . ) = x;

q(q(x, y0, y1, . . .), z0, z1, . . .) = q(x, q(y0, z0, z1, . . .), . . . , q(yn, z0, z1, . . .), . . .).

Among ω-clones, a special role is played by the functional ω-clone OA containing all the
ω-ary functions over a fixed setA. Just as any monoidM is a transformation monoid of its
underlying set via the action given by left multiplication, every ω-clone C is (isomorphic
to) a functional ω-clone on its underlying set C [8].

Given a similarity type τ (of ω-ary operation symbols), we augment the type of ω-
clones by introducing a constant f for each f ∈ τ . Thus we form a connection between
algebras of type τ and ω-clones over τ (i.e. where elements of τ are interpreted as con-
stants). If A is an algebra of type τ , OA is the functional ω-clone on A with the set
{fA : f ∈ τ} of constants (with value domain A). Firstly, we show that the set Tτ (ω)
of terms over a countable set of generators can be endowed with the structure of a ω-
clone, denoted by Nτ , which holds a role as the initial object in the category of ω-clones.
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Then we describe a way to connect τ -algebras and ω-clones over τ , both individually and
collectively. Individually, if A is a τ -algebra and C an ω-clone over τ , we define

• A↑ as the image of the unique mapping Nτ → OA;

• C↓ as the τ -algebra serving as the value domain of the representation C ↪→ OC↓ .

Collectively, if K is a class of τ -algebras and H a class of ω-clones, we define

• K△ as the class of the functional ω-clones with value domain an element of K;

• H▽ as the class of τ -algebras which appear as value domain of some element of H.

We prove that in both cases, starting from a variety, the resulting class is again a variety.
We thus establish a correspondence between familiar concepts of universal algebra (on
the left) and their translation into clone-algebraic notions (on the right); for instance:

the absolutely free algebra Tτ (ω) the ω-clone Nτ

the clone Clo(A) of A the image of Nτ → OA

the theory Th(A) of A the kernel of Nτ → OA.

This dictionary makes possible the recovery of some noteworthy results in universal al-
gebra. Among these is the characterization of classes of algebras definable by sets of
equations; we show that for a class K of algebras are equivalent:

1. K is variety;

2. K is an equational class;

3. K = K△▽ and K△ is a variety.

This constitutes an enrichment to Birkhoff’s celebrated HSP Theorem [1]. The ω-clone
OA naturally possesses a topology. By equipping functional ω-clones with this topology,
we obtain a short proof of a recent result regarding a topological version of Birkhoff’s
Theorem [5, 9].
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Explicit constructions of models of the theory of a valued field are useful tools for un-
derstanding its model theory. Since Kaplansky’s work ([5]), it has been a topic of interest
to characterize value fields in terms of fields of power series. In particular, Kaplansky
proved that, under certain assumptions, an equicharacteristic valued field is isomorphic
to a power series field. For the mixed characteristic case, in [3] the author, assuming the
Continuum Hypothesis, provides a characterization, in terms of power series, of pseudo-
complete finitely ramified valued fields with a fixed residue field k and valued in a Z-group
G, using a Hahn-like construction with coefficients in a finite extension of the Cohen field
C(k) of k ([2]). In this construction, the elements of the field are “twisted” power series,
i.e. powers series whose product is defined by having an extra factor, given by a power of
an element in the field of coefficients with minimal positive valuation. This generalizes
a result by Ax and Kochen in [1], who provide a characterization of pseudo-complete
valued fields elementarily equivalent to the field of p-adic numbers Qp. In this talk, we
describe this Hahn-like construction and the following characterization in the finitely ram-
ified case. Moreover, we will see some applications and how these constructions are used
to characterize model complete valued fields in the various settings, depending on the
characteristics of the valued field and the residue field ([4]).
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The problem of deciding whether a graph has an Eulerian path, namely a path visiting
each edge of the graph exactly once, has a very long history in mathematics, dating back
to the famous problem of the seven bridges of Könisberg, solved by Euler in 1736.

Around 200 years later, Erdős, Grünwald and Vászsonyi extended Euler’s result by
characterizing those graphs which admit an infinite Eulerian path. This characterization
strongly relies on the number of ends of a graph, namely, the maximum number of infinite
connected components which can be obtained by removing a finite number of edges.
Indeed, only graphs with one or two ends can have Eulerian paths.

From the point of view of computability theory, their result highlights an important
difference between computable graphs and highly computable graphs, the latter notion
corresponding to computable and locally finite graphs where, in addition, one can uni-
formly compute the degree of each vertex. In fact, Bean showed that, while there are
computable, locally finite graphs which admit an Eulerian path but no computable one,
every highly computable graph admitting Eulerian paths must have a computable one.

However, deciding whether a given graph admits an Eulerian path at all is a difficult
problem: as Kuske and Lohray have shown, such problem is Π0

2-complete even when
restricting to connected, highly computable graphs. Interestingly, this turns out to be the
same difficulty of simply counting the number of ends in a highly computable graph.

Motivated by these considerations, we have studied how the difficulties of these two
problems precisely relate. We have found that counting the ends of the graph indeed rep-
resents the hardest task when deciding the existence of an Eulerian path. More precisely,
we have shown that:

1. deciding existence of Eulerian paths is only (2-c.e.)-complete when restricting to
highly computable graphs with one end,
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2. the same problem realizes precisely the m-degrees of ∆0
2 sets in the case of highly

computable graphs with two ends.

To get these results we have conducted a detailed analysis, which we believe of in-
dependent interest, of the computational hardness of what we call the separation prob-
lem: to decide whether a finite set of edges separates a connected and highly computable
graph into two or more infinite connected components. Two results here are particularly
relevant. On the one hand, we show that any function which takes as input a highly
computable graph and outputs a finite set of edges separating the graph must compute
the halting problem. On the other hand, the separation problem turns out to be (non-
uniformly) decidable for highly computable graphs with finitely many ends: in fact, from
the number of ends of a graph and a single maximally separating set, we can compute the
whole collection of separating sets for this graph.
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Linear logic, introduced by Jean-Yves Girard in [5] in 1987, is a refinement of both
classical and intuitionistic logic in which formulas are treated as resources: the structural
rules of contraction and weakening are restricted to formulas that are marked with modal
operators and the semantic equivalence induced by the models of linear logic is non-
trivial.

In this context, we ask ourselves the question of finding a canonical object represent-
ing the proofs in the same class of semantic equivalence. Formalization through proof-
nets removes the redundant information of sequent calculus that concerns the order of
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application of the rules and allows us to define the cut-elimination procedure through
local manipulations of graphs rather than global transformations of proof trees. Conse-
quently, it is an appropriate formalism to study the dynamics of normalisation and to prove
fundamental properties of the system such as strong normalisation: the fact that, given a
proof-netR, every chain of reductions starting fromR ends in a cut-free proof-net (see [5]
and [8]).

Following the point of view of Curry-Howard’s correspondence between proofs and
programs and relying on the existing literature about the relationship between the dy-
namics of PCF and the models providing a mathematical representation of this language
([2], [6], [7] and [9] to name a few), we study the connections between proof-nets and
their semantic interpretations.

Therefore, we focus on three fundamental notions: the syntactic, semantic and obser-
vational equivalences. The first one is intrinsic, whereas the others depend on the model
and on the notion of observation we choose, respectively. Generally speaking, these three
notions of equivalence are increasingly coarse: all models identify syntactically equiva-
lent proofs and all reasonable notions of observational equivalence include the semantic
equivalence of all models. A model is injective when the induced semantic equivalence
coincides with syntactic equivalence, fully abstract when it coincides with observational
equivalence. In general, full abstraction fails when some points of the model are not in-
terpretations of proofs. A classic example is Scott’s continuous model, that is not fully
abstract for PCF since the “parallel or” function is not PCF-definable, as proven in [9].
On the other hand, when every point of a model is the interpretation of a proof, we say
that full completeness holds. This last property, which was originally studied in [1], is
often exploited as a sufficient condition for full abstraction, for instance in [6].

In linear logic, the question of injectivity was addressed for the first time by Tor-
tora de Falco in [10], where he produced two counter-examples to the injectivity of the
multiset-based coherent model for multiplicative exponential linear logic without units
(MELL). On the other hand, the injectivity of the relational model for the full multi-
plicative exponential fragment of linear logic was recently proven by de Carvalho in [4]
by employing the powerful Taylor expansion technique, which allows us to represent a
proof-net as the infinite series of its linear approximations.

To ask the question of injectivity is also a way to address the problem of proof iden-
tity: one asks whether two proofs are to be considered equal. In other words, one aims to
specify what is a proof. As already mentioned, proof-nets identify distinct sequent calcu-
lus proofs that are morally the same, because they only differ in the order in which some
rules are applied. We could then say that proof-nets capture more faithfully the essence of
a proof. With the idea of “measuring” the quality of the representation of proofs as proof-
nets, we study the question of injectivity for the coherent model in order to understand if
one could make “more identifications” than proof-nets.

Advances

We resume the work on the injectivity of multiset-based coherent semantics which
started in [10]. It was conjectured that the result of injectivity can be extended to all con-
nected proof-nets and it was given a sufficient condition to reach this conclusion: the ex-
istence of an injective experiment for all connected proof-nets only consisting of axioms,
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tensors, derelictions and contractions. It was also proven that this condition is satisfied if
one assumes that every contraction is terminal.

Atomic pre-experiment and (C)-pairs.

We can define a partial labelling of pairs of arcs, called atomic pre-experiment, in
such a way that any two premises of an atomic contraction are incoherent and any two
premises of a non-atomic contraction are incoherent or undefined. The definition relies
on the fact that we’re dealing with connected proof-nets: two arcs of the same type are
incoherent if and only if, for every switching graph, the unique path linking the nodes of
which these arcs are the conclusions contains neither of them. The atomic pre-experiment
is an injective experiment when all contractions are atomic.

Under the same assumption, we generalize the notion of (C)-pair introduced in [10].
A pair of conclusions of atomic why not nodes with the same address is a (C)-pair if
there is a switching graph in which at least one of them belongs to the unique path con-
necting the conclusions of the proof-net over which they are located. Once again, this
definition requires that the proof-net is connected. When a pair of conclusions (a, a′) of
the proof-net has a unique (C)-pair, the atomic pre-experiment automatically guarantees
the incoherence of (a, a′).

Injectivity for connected (?`)LLpol proof-nets.
We now consider the fragment (?`)LLpol of linear logic that is defined by the following
grammar:

N,M ::= X | ?X | ?P `N | N ` ?P P,Q ::= X⊥ | !X⊥ | !N ⊗ P | P ⊗ !N

In this very specific framework, it turns out that the question of injectivity has a positive
answer because, even when a pair of conclusions does not have a unique (C)-pair, we can
always find one on which we can harmlessly assign incoherence.

Theorem 1. Multiset-based coherent semantics is injective for connected (?`)LLpol proof-
nets.

Given that connected (?`)LLpol proof-nets embed the simply typed λI-calculus, which
is the simply typed λ-calculus without weakenings (see [3]), we also have a proof of the
following result.

Corollary 2. Multiset-based coherent semantics is injective for the simply typed λI-
calculus.
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It is well-known that the formalists did not recognize any alternative to Brouwer’s in-
tuitionist program and its developments. Rather, they saw with satisfaction Heyting’s for-
malization of intuitionist logic (IL) as an inclusion of the intuitionist suggestions into their
formalist foundations of Logic and Mathematics. However, Goedel’s theorems stopped
Hilbert’s formalist program. After this failure of formalism, the suggestion of the former
rebel to Hilbert’s program, Hermann Weyl, was accepted: not conceiving any alternative
to Hilbert’s program, it had to be pursued again, yet as a general reductivist project of a
sort quite common in the philosophy of science at the time (Zach 2023, sect. 3).

In 1945 Stephen C. Kleene suggested the BHK interpretation of intuitionist logic
(Dummett 1977, pp. 222–234; Coquand 2013; Iemhoff 2019, sect. 3.1). As a con-
sequence of this commonly shared BHK interpretation it is usual to bring together the
three philosophical attitudes of Brouwer, Heyting and Kolmogorov on the foundations
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of IL into a common view. Actually, this ecumenical viewpoint eventually refers to the
axiomatic foundation of IL suggested by (Heyting 1930).

However, the BHK-interpretation is not a formal definition because the notion of “con-
struction" is not defined and therefore open to different interpretations. Moreover, Kurt
Goedel charged this interpretation of impredicavity (Goedel 1933, p. 53); later no con-
clusive remedy was offered.

A century of not clear prosecution of the research on the foundations followed. Some-
one lamented that after this century the attempts to advance in this subject were unsuc-
cessful (Martin-Loef 2008). In my opinion the presently blurred borders of the Hilbert’s
program constitute the cause of what Dov Gabbay states: "The notion of a proof system
is not well defined in the literature. There are some recognized methodologies such as
‘Gentzen formulations’, ‘tableaux’, ‘Hilbert style axiomatic systems’, but these are not
sharply defined". (Gabbay 2014, p. 45; in addition, see the criticism of Contu 2006 and
the criticism to proof theory by Dicher and Paoli 2021). Indeed, by not suspecting an al-
ternative to the axiomatic system, all these techniques present mere “creative extensions"
of Hilbert’s formalist attitude.

Yet, already Beth (1959, sect 1.2), van Heijenoort and Hintikka interpreted Goedel’s
theorems as the need of discovering, “under penalty of misleading the research on the
foundations", an alternative theoretical organization to Hilbert’s axiomatic one. A pre-
vious paper (Drago 2012) recognized an alternative model of theoretical organization in
many scientific theories: e.g. Lazare Carnot’s mechanics, Sadi Carnot’s thermodynam-
ics, Lobachevsky’s non-Euclidean geometry, Einstein’s first theory of quanta, and Dirac’s
(first edition of his textbook on) quantum mechanics. This theoretical organization is
called a problem-based one (PO). Moreover, a more radical and direct criticism to BHK
interpretation came from the result of a previous paper (Drago 2021) proving that in 1932
paper Kolmogorov not only wanted to detach its foundation of IL from Heyting’s ax-
iomatic, but applied almost entirely the PO model of the alternative model of theoretical
organization. Hence, the common appraisal of Kolmogorov’s formalization as a merely
intuitive foundation (since it is not an axiomatic one) of IL is denied by the fact that
actually Kolmogorov’s paper suggested a formalization of IL, yet of a new kind.

The model of a PO is composed of eight logical steps:

i) No more than the common knowledge on the field at issue is presupposed.

ii) A problem which is unsolvable through usual tools is declared; e.g., in Lobachevsky’s
geometry: how many parallel lines exist.

iii) The theory is aimed at discovering a new scientific method capable to solve the
given problem.

iv) The theory makes use of doubly negated propositions whose corresponding affir-
mative propositions are not equivalent in meanings (DNPs).

v) By composing together DNPs the theory argues through ad absurdum arguments
(AAA); the conclusion of each AAA is again a DNP (i.e. an AAA is a “weak" ad
absurdum proof); it may work as a premise for a next AAA, so to obtain a chain of
AAAs.
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vi) The conclusion of the final AAA is a universal predicate, ¬¬UP, which represents a
possible hint for the resolution of the given problem and all related problems.

vii) At this point as a matter of fact the author translates the above predicate ¬¬UP into
the corresponding affirmative predicate UP. Apparently the author thinks to have
collected by his previous reasoning enough evidence to be justified in promoting
his conclusion ¬¬UT to the corresponding affirmative proposition UP, although this
change is not allowed by intuitionist logic, which previously he had adhered to.

viii) Exactly because now this proposition UP is an affirmative one, the author can test
against reality it and all the derived propositions obtained from it by means of clas-
sical logic; hence, he can validate his entire theory or not (Drago 2012).

The substantial adhesion of Kolmogorov’s paper to the PO model suggests that only
Kolmogorov’s foundation formalizes IL in an alternative way to Hilbert’s method of ax-
iomatization whereas Heyting’s axiomatization of IL according to Hilbert’s method of
axiomatization actually represents a reductive compromise between the intuitionist pro-
gram and the formalist program (On the other hand, Brouwer did not want build an al-
ternative logical system to the classical one; de Stigt 1990, sect. 5.8. However, he later
was in agreement with Heyting’s axiomatic of IL as well as his previous axiomatization
of projective geometry; van Dalen 1990).

Hence, at present we have two alternative philosophical and formal views of logic and
they are mutually incompatible, being the failure or not of the doubly negation law a sharp
borderline between them (Prawitz and Melmnaas 1968). It is time to disregard previous
compromises for starting again from the dichotomy intuitionism/formalism.

It has to be noticed that Kolmogorov’s foundation of IL is partially unsatisfactory
because it relies on mathematical problems, instead of a logical subject. Therefore, let us
try to build a rational foundation of IL as an exact PO.

First of all one has to state the basic problem of IL. The best candidates are the fol-
lowing ones.

1) “It is not true that equivalence is not identity". This problem was suggested by
Troelstra (1990) when illustrating at best the foundations of intuitionism. It is re-
markably that already in 18th century earlier Leibniz and Condillac put the same
problem as the key problem of whole science. However, this is an advanced prob-
lem which can be tackled not before one formalizes equivalence and identity.

2) Already Aristotle stated the basic problem of the system of each kind of logic: “to
produce a system of arguing which does not lead to a contradiction."(Aristotle)

3) “Since “Nothing is without a reason" (Leibniz), how to expressed this reason by
means of a logical implication?" This problem may be considered the motivation of
a natural deduction theory.

4) “What means a negation?" Notice that by applying its double negation law classical
logic denies this problem: a negation is defined as a logical operation which, by
adding one more negation leads to an affirmation. Hence, the previous problem
is a specific one of IL. Among the above listed problem the more convenient one
appears the fourth one.
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Now let us remark that it is possible to produce an infinite chain of negations; this
chain is surely meaningless. One has to stop it. The simpler way is to ask about the
second negation of this chain: are two negations equivalent to the corresponding affirma-
tion, or not? Here a crossroads occurs: 1) either the double negation is equivalent to the
affirmation (and hence for the first time a logical implication appears ¬¬A→A). 2) Or it
is not equivalent and the double negation law fails. In the latter situation which is typical
of IL one has to characterize the single negation. After Brouwer it is customary to iden-
tify intuitionist negation with its implication of absurd. But Kolmogorov (1932, p. 332)
correctly remarked that in IL the implication of absurd cannot be exempted to be proved.
Hence, the question is whether this proof is considered as given a priori, or potentially
given, or to be exhibited. Raatikainen’s analysis of this question as it is debated in the
current literature on the foundations of IL could not solve the problem (Raatikainen 2004,
p. 143).

However, even in the most likelihood case we do not dispose of a proof of implication
of absurd, we can state that “It is not true that one cannot prove the absurd". An appli-
cation of PSR, which in the PO model constitutes the final step – i.e. the application of
PSR to the final conclusion of the possible chain of AAAs - translates previous proposi-
tion into: “Negation implies absurd", i.e. “One can a priori prove that negation implies
the absurd", i.e. the first of the three cases considered by Raatikainen. This proposition
represents the common attitude about the intuitionist negation, i.e. to assume an a priori
proof of the implication of the absurd. In other words, the PSR is here applied to not the
conclusion of a PO theory of IL but a single constant. This move preconceives the theory.
After this application of PSR the problematic attitude of OP is cancelled and the author
argues in classical logic. Therefore after this step a formalist foundation of IL starts, al-
though along different premises from that of classical logic. In this way the problematic
attitude is replaced by a formalist attitude; which made self-confident by its inclusion of
an apparently different viewpoint, wrongly exchanged the problematic aspect of IL with
its intuitive aspect. Being the formalists convinced that any intuitive aspect of logic has
to be either included in their kind of formalism or suppressed as a primitive aspect here
we recognize the common attitude of last century formalists.

In this sense, the polemic Hilbert-Poincaré about the principle of mathematical induc-
tion is enlightening. Hilbert called Poincaré’s version of it a merely intuitive principle
(van Heijenoort 1967, p. 480-481), whereas actually this version is a DNP (Drago 1996),
i.e. the only version which is the suitable one for a PO theory.
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The Boolean logic of subsets is usually only presented in the special case of proposi-
tional logic (where the universe set is U = 1). Subsets and partitions (or quotient sets) are
category-theoretic duals so there is a dual logic of partitions. The join and meet operations
on partitions were defined in the 19th century (Dedekind and Schröder), but the definition
of the implication operation on partitions and two algorithms for defining all the Boolean
operations on partition only came in the 21st century ([1], [4]). This development of the
logic of partitions led to a series of applications.

Just as Boole’s first application was the quantitative version of the logic of subsets
in finite probability theory, so the first application of partition logic was the quantitative
version as the logical information theory based on the notion of logical entropy ([2], [3]).
The logical entropy of a partition is a probability measure interpreted as the probabil-
ity in two random draws from U that one will draw a distinction of the partition (i.e., a
pair of elements in different blocks of the partition). All the usual Venn diagram defi-
nitions for simple, joint, conditional, and mutual logical entropy follow from it being a
measure. The better-known Shannon entropy is not a measure on a set but there is a non-
linear monotonic transformation of those compound logical entropy formulas that yields
all the corresponding formulas for Shannon entropy. Thus logical entropy provides a new
logical foundation for information theory which includes the Shannon entropy as a spe-
cialized formula that is central to coding and communications theory. Logical entropy
also generalizes to the quantum level where it is the probability that in two independent
measurements of the same prepared quantum state, two different eigenvalues will be ob-
tained.

The second application of partition logic is to the century-old problem of interpret-
ing quantum mechanics (QM). When the set-based concepts of partition mathematics are
linearized to Hilbert spaces, then one arrives at the mathematical formalism of QM–not
the physics of QM which is obtained by quantization. Since partitions are the mathemat-
ical tool to describe distinctions and indistinctions or definiteness and indefiniteness, this
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shows that QM math is the mathematics of (objective) indefiniteness and definiteness.
One can even see the lattice of partitions on a set as the bare bones or skeletal version
(i.e., stripping away the scalars) of the pure, mixed, and classical states in QM. Moreover,
the other basic QM concept is that of an observable operator where the direct-sum de-
composition of its eigenspaces is just the linearized version of the inverse-image partition
of a numerical attribute f : U → R Thus both the quantum states and observables are
derived from partitions and the basic notion of projective measurement, measuring a state
by an observable, is represented back at the set level by the join of the two partitions. This
partitional way of interpreting the quantum formalism is the "Objective Indefiniteness or
Literal interpretation" of quantum mechanics ([5], [6]).
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The problem of describing the prime spectra of distributive lattices was raised in [2, 7]
and it is equivalent to the classical problem of characterizing the posets isomorphic to
the spectrum of a commutative ring with unity [3, 8, 10]. In [6] Esakia asked the same
question for Heyting algebras. Both questions remain unsolved.

Characterize the poset of
prime ideals of a distributive
lattice with a unit and/or a
zero.
Chen and Grätzer – [2, 7].

Can an arbitrary partially
ordered set be the partially
ordered set of prime ideals in
a ring?
Kaplansky – [10].

It is tempting to replace lat-
tices by Heyting algebras and
suggest this as a new prob-
lem.
Esakia – [6].

In what follows we explain these problems, the connections between them, and we
state our contribution.

A Heyting algebra is a structure A = ⟨A;∨,∧, 0, 1,→⟩ where ⟨A;∨,∧, 0, 1⟩ is a
bounded distributive lattice and→ is a binary relation onA such that, for every {x, y, z} ⊆
A, it holds x ⩽ y → z if and only if x ∧ y ⩽ z (⩽ is the lattice order of A). A filter F
of a lattice is said to be prime if it is proper and, if x ∨ y ∈ F , then x ∈ F or y ∈ F .
Equivalently, a filter F is prime when its complement is an ideal. Similarly, an ideal of a
lattice is said to be prime if its complement is a filter. As such, when ordered by inclusion,
the posets of prime filters and of prime ideals of a lattice are dually isomorphic. The poset
of prime filters of a lattice is called its prime spectrum.

Where ⟨X;⩽⟩ is a poset and Y ⊆ X , we use the following shorthands:

↓Y = {x ∈ X : there is y ∈ Y s.t. x ⩽ y}, ↑Y = {x ∈ X : there is y ∈ Y s.t. y ⩽ x}.

A subset Y of X is called a downset (resp. upset) if ↓Y = Y (resp. ↑Y = Y ).

Definition 1. A tuple ⟨X;⩽, τ⟩ is called a Priestley space when ⟨X;⩽⟩ is a poset, ⟨X; τ⟩
is a compact topological space, x ⩽̸ y implies that there exists a clopen upset U such that
x ∈ U and y /∈ U . If, moreover, ↓V ∈ τ for every V ∈ τ , then ⟨X;⩽, τ⟩ is called an
Esakia space.

When equipped with suitable morphisms, Priestley spaces (resp. Esakia spaces) form a
category dually equivalent to that of bounded distributive lattices (resp. Heyting algebras)
and their homomorphisms [5, 6, 13]. In particular, every prime spectrum of a bounded
distributive lattice (resp. Heyting algebra) can be endowed with a topology turning it into
a Priestley (resp. Esakia) space. A poset with this property will be called Priestley (resp.
Esakia) representable. Consequently, the following fact holds true:

Theorem 2. A poset is isomorphic to the spectrum of a bounded distributive lattice (resp.
Heyting algebra) if and only if it is Priestley (resp. Esakia) representable.
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Since every Heyting algebra is a bounded distributive lattice, every Esakia repre-
sentable poset is Priestley representable too. However, the converse does not hold: for in-
stance, an important difference between the classes of Priestley and Esakia representable
posets is that the former is closed under order duals, while the latter is not.

The spectrum of a commutative ring with unit is the poset of its prime ideals ordered
by inclusion. It turns out that the spectra of commutative rings with unit and those of
bounded distributive lattices are the same, up to isomorphism [14]. Actually, a stronger
result holds: distributive lattices can be represented in terms of spectral spaces [16] (topo-
logical spaces homeomorphic to the set of prime ideals of a commutative ring with unit
endowed with the Zariski topology [8]). As the categories of Priestley spaces and that of
spectral spaces are isomorphic [3], Kaplansky’s question is equivalent to that of Chen and
Grätzer.

We aim to contribute to the representability problem as follows: two necessary con-
ditions for a poset ⟨X;⩽⟩ to be Priestley representable are from [2, 7, 10]:

1. Every nonempty chain of ⟨X;⩽⟩ has a supremum and an infimum in X;

2. For every x, y ∈ X , if x < y there are x0, y0 ∈ X such that x ⩽ x0 < y0 ⩽ y, but
there is no z ∈ X such that x0 < z < y0.

Notably, conditions (1) and (2) are not sufficient to ensure that a poset is Priestley
representable, as proved in [8]. We will extend a third condition which first appeared in
[8] and call it order compactness. We show that if a poset is order compact then it satisfies
condition (1), but the converse is not true. Although a Priestley representable poset needs
to be order compact and satisfy condition (2), these two conditions together do not imply
that a poset is Priestley representable [12].

We remark that “abstract” characterizations of Priestley (not necessarily Esakia) rep-
resentable posets exist: notably, the class of Priestley representable posets coincides with
the class of profinite posets [9, 15]. However, understanding whether a poset is profinite
seems as hard as checking if it is Priestley representable (for another abstract character-
ization, see [4]). For this reason, part of the interest shifted towards looking at certain
subclasses of posets whose description is more transparent. For instance, Lewis showed
that a tree (a poset with minimum and whose principal downsets are chains) is Priestley
representable if and only if it satisfies conditions (1) and (2) [11].

On this spirit, we consider two classes of posets: (well-ordered) forests, that is, posets
whose principal downsets are (well-ordered) chains, and root systems, the order duals
of forests. We will prove that a root system is Priestley (resp. Esakia) representable if
and only it satisfies conditions (1) and (2). As Priestley representable posets are closed
under order duals, the above result yields a new proof of Lewis’ description of Priestley
representable forests [11]. This representation of root systems can also be used to simplify
the proof of a result from [1].

However, as Esakia representable posets are not closed under order duals, a taxonomy
of the Esakia representable forests remains open. Our main result is a characterization of
the Esakia representable forests whose principal downsets are well-ordered:

Theorem 3. A well-ordered forest is Esakia representable iff every nonempty chain has a
supremum.
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A very important topic in computable analysis, which, not surprisingly, has played a
crucial role in the development of the subject, is the effective reformulation of classical
mathematical theorems of the form

(∀x ∈ X)(∃y ∈ Y )A(x, y) (∗)

for X and Y suitable topological spaces. This approach exactly corresponds to showing
that a corresponding multi-valued function, assigning to any x ∈ X a y ∈ Y such that
A(x, y), is computable.

A strictly related interesting aspect, also from a philosophical perspective, is to eval-
uate to what extent the classical proofs of those classical results have an algorithmic na-
ture. Some of such proofs present indeed an intuitive computational flavour, but, so to say,
some computable steps are hidden under the surface. Hence, in such cases, the proofs of
computability of the corresponding multi-valued functions can retrace the classical proofs
by showing in a rigorous way the computational content that was only sketched in them.
Nevertheless, removing the rind to get to the computational pith might contain non-trivial
steps, and it depends first of all on the choice of suitable translations of the classical
concepts into computational notions.

An interesting example is given by the well-known Tietze-Urysohn Extension Theo-
rem. A computable version of this theorem was proved by Klaus Weihrauch in [4]. In
order to prove his result, Weihrauch provided in fact an effectivization of the classical
proof contained in [1].

The Tietze-Urysohn Theorem classically finds a generalization in the Whitney Ex-
tension Theorem. For the real case, this theorem states that for any given (non-empty)
closed set F ⊆ Rn and a jet of order m of functions on F , there exists a total continu-
ous function g in Cm(R

n) such that both g as well as its partial derivatives coincide on
F with the corresponding partial functions of the jet. Here a jet is a finite sequence of
continuous functions defined on F satisfying Taylor’s condition, and which behave like
partial derivatives of each other. A classical proof of this statement is contained in [3]
and, as a preliminary result, Stein proves an extension theorem for the limit case in which
the jet consists only of a single continuous function, providing then another proof for the
Tietze-Urysohn Extension Theorem.

In this talk I will check the computability of the construction of Whitney’s exten-
sions through an effectivization of the proofs given by Stein. A preliminary investigation
of their computational content brought already in [2] to the systematic classification of
different formulations of the projection point problem onto closed subsets of Rn, and it
turned out that only the problem of finding approximated projections of an x ∈ Rn onto a
closed F ⊆ Rn up to a given error bound ε is computable with respect to full information
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for closed sets (which consists of an exact open covering of the complement of the set and
of a dense subset of the set itself). In fact, the effectivization of Stein’s proofs requires the
use of approximations in several different aspects and in a way that implies a non-trivial
departure from their original formulations.
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Teaching Mathematical Logic within a curriculum oriented to Artificial Intelligence
(AI) requires deep restructuring, concerning both the scientific content of the course and
the lecture delivering mode. Given that logic is the essential part of the symbolic compo-
nent of AI, it is clear that in an AI-specific logic course, high priority should be granted to
computational tools that can be used in applications such as constraint solving, planning,
knowledge representation, verification, multi-agent systems, etc.

The experience that this talk reports is located in a three-year inter-athenaeum AI
course opened in the academic year 2021-2022 jointly by the Universities of Milan (Statale
and Bicocca) and Pavia. Lectures are given in English and a significant part of students
come from foreign countries (mostly East European and Middle East countries). Contri-
butions to this initiative are currently given by mathematicians as well as by physicists
and computer scientists. The Computational Logic course is located in the first semester
of the first year of the study curiculum, where it constitutes the only teaching activity with
mathematical content outside the analytic area.

This context made the structuring of the course rather challenging and peculiar. The
main focus was on the SMT area (’Satisfiability Modulo Theories’, see the website

https://smtlib.cs.uiowa.edu/
for information) and the related algorithms. These algorithms include the Davis-Putnam-
Longemann-Loveland (DPLL) procedure (with relevant heuristics such as backjumping
and conflict driven learning), as well as some decision procedures for quantifier-free
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(arithmetic and non-arithmetic) fragments, together with their combinations. Methods
for handling quantifiers, through Herbrand instantiation or quantifier elimination, are also
partially covered. From the mathematical logic point of view, Tarski’s semantics for first-
order logic is the fundamental formal reference framework.

The lab activities (2 hours per week out of 5 hours in total assigned to the course)
formed an an essential part of the course and also of the exam tests. The z3 solver from
Microsoft Research was adopted (the solver is freely available online for the different plat-
forms). Students were guided in modeling and solving via computer problems of various
nature, like puzzles, solitaire games (sudoku, domino, tetravex, peg), graphs problems
(coloring, identification of Hamiltonian paths/cycles), scheduling and planning problems,
verification of code fragments, etc.

The interdisciplinary aspect of the course was particularly emphasized: thanks to the
extreme flexibility inherent to SMT tools, connections to disciplines like discrete mathe-
matics, operations research, algorithms and data structures, programming languages were
illustrated. Finally, the formalization of concrete examples turned out to be a very ef-
fective tool for our first-year students in order to access the basic mathematical language
and the basic set-theoretic notions, whose knolwledge is essential for the solution of the
proposed problems.

During the presentation of the talk, we shall supply a brief overview of the basic SMT
notions as well as concrete examples of the problems carried out during the lab activities.

Interpolation failures in semilinear substructural logics
Valeria Giustarini1, Sara Ugolini1

1IIIA, CSIC, Bellaterra, Barcelona, Spain.
valeria.giustarini@iiia.csic.es

sara@iiia.csic.es

SPEAKER: Valeria Giustarini.

In this contribution we present some new results concerning the deductive interpola-
tion property in substructural logics whose equivalent algebraic semantics are classes of
residuated lattices. Residuated structures play an important role in the field of algebraic
logic; their equivalent algebraic semantics, in the sense of Blok and Pigozzi [1], encom-
pass many of the interesting nonclassical logics: intuitionistic logic, intermediate logics,
many-valued logics, relevance logics, linear logics and also classical logic as a limit case.
Thus, the algebraic investigation of residuated lattices is a powerful tool in the systematic
and comparative study of such logics.

Let us be more precise; a residuated lattice is an algebra A = (A,∨,∧, ·, \, /, 1) of
type (2, 2, 2, 2, 2, 0) such that: (A,∨,∧) is a lattice; (A, ·, 1) is a monoid; the residuation
law holds: for all x, y, z ∈ A, x · y ≤ z ⇔ y ≤ x\z ⇔ x ≤ z/y, (where ≤ is
the lattice ordering). Residuated lattices form a variety. A residuated lattice is said to
be: integral if the monoidal identity is the top element of the lattice; commutative if the
monoidal operation is commutative; n-potent if it holds that xn = xn+1; semilinear if it is
a subdirect product of chains. Residuated lattices with an extra constant 0 are called FL-
algebras (since they are the equivalent algebraic semantics of the Full Lambek calculus,
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see [3]), and we call them 0-bounded if 0 ≤ x; bounded if they are integral and 0-bounded.
Semilinear bounded commutative FL-algebras are called MTL-algebras since they are the
equivalent algebraic semantics of the monoidal t-norm based logic MTL [2].

Our results use one of the most interesting bridge theorems that are a consequence
of algebraizability: the connection between logical interpolation properties and algebraic
amalgamation properties. We say that a logic L, associated to a consequence relation ⊢,
has the deductive interpolation property if for any set of formulas Γ ∪ {ψ}, if Γ ⊢ ψ
then there exists a formula δ such that Γ ⊢ δ, δ ⊢ ψ and the variables appearing in
δ belong to the intersection of the variables appearing both in Γ and in ψ, in symbols
V ar(δ) ⊆ V ar(Γ) ∩ V ar(ψ). If the logic L has a variety V has its equivalent algebraic
semantics, and V satisfies the congruence extension property (CEP), L has the deductive
interpolation property if and only if V has the amalgamation property (without the CEP,
the amalgamation property corresponds to the stronger Robinson property, see [6]). Let
us then recall the other necessary notions; given a class K of algebras in the same signa-
ture, a V-formation is a tuple (A,B,C, i, j) where A,B,C ∈ K and i, j are embeddings
of A into B and C respectively; an amalgam in K for the V-formation (A,B,C, i, j) is a
triple (D, h, k) where D ∈ K and h and k are embeddings of respectively B and C into
D such that h ◦ i = k ◦ j. A class K of algebras has the amalgamation property if for any
V-formation in K there is an amalgam in K. We focus on the study of the amalgamation
property in semilinear varieties of residuated lattices, solving some long-standing open
problems; most importantly, we establish that semilinear commutative (integral) residu-
ated lattices and their 0-bounded versions do not have the amalgamation property.

In order to obtain a failure of the amalgamation property, we use the recent results in
[4]; the authors show that in a variety V with the CEP and whose class of finitely subdi-
rectly irreducible members VFSI is closed under subalgebras, the amalgamation property
of the variety is equivalent to the so-called one-sided amalgamation property of VFSI.
Given a V-formation (A,B,C, i, j), a one-sided amalgam for it is a triple (D, h, k) with
D ∈ K and as for amalgamation h ◦ i = k ◦ j, but while h is an embedding, k is a ho-
momorphism. A class K of algebras has the one-sided amalgamation property if for any
V-formation there is a one-sided amalgam in K. The mentioned result of [4] is particularly
useful in varieties generated by commutative residuated chains; indeed, all commutative
residuated lattices have the CEP and a semilinear residuated lattice is finitely subdirectly
irreducible if and only if it is totally ordered. Hence, in order to show the failure of the
amalgamation property in a semilinear variety with the congruence extension property,
it suffices to find a V-formation whose algebras are totally ordered, and that does not
have a one-sided amalgam in residuated chains. We do exactly this, and we exhibit a
V-formation, which we call VS-formation, given by 2-potent commutative integral resid-
uated chains that does not have a one-sided amalgam in the class of totally ordered resid-
uated lattices. This entails that, if V is a variety of semilinear residuated lattices with the
congruence extension property, and such that the algebras in the VS-formation belong to
V, then V does not have the amalgamation property. In particular we get the following
new results.

Theorem 1. The following varieties do not have the amalgamation property:

1. Semilinear commutative residuated lattices;

2. Semilinear commutative integral residuated lattices;
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3. Semilinear commutative FL-algebras;

4. MTL-algebras;

5. n-potent MTL-algebras for n ≥ 2.

Using some algebraic constructions (rotations and liftings) we are also able to adapt
our counterexample to construct a V-formation consisting of, respectively, involutive
(¬¬x = x, where ¬x = x\0) and pseudocomplemented (x ∧ ¬x = 0) FL-algebras;
thus in particular we obtain that involutive and pseudocomplemented MTL-algebras also
do not have the amalgamation property.

Finally, we mention that the algebras involved in the V -formation that yields the coun-
terexample can be constructed by means of a new construction that we introduce in order
to be able to construct new chains from known ones. Such construction extends and
generalizes the partial gluing construction introduced in [5], and allows us to find other
countably many varieties of residuated lattices without the amalgamation property.
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SPEAKER: Giorgio Laguzzi.

In this talk we focus on the relation between Laver generic κ-reals and Cohen κ-reals
in the generalised Baire spaces. We prove that, in contrast with the standard Laver forc-
ing L in ωω, any suitable generalisation Lκ in κκ adds Cohen κ-reals. We also study
a dichotomy and an ideal naturally related to generalized Laver forcing. Using this di-
chotomy, we prove the following stronger result: if κ<κ = κ, then every < κ-distributive
tree forcing on κκ adding a dominating κ-real which is the image of the generic under a
continuous function in the ground model, adds a Cohen κ-real. As a consequence of these
constructions we also show that the generalised Laver measurability and the generalised
Ramsey property imply the Baire property in the generalised Baire space for topologically
reasonable families of subsets of κκ.

This is a joint work with Yurii Khomskii, Marlene Koelbing and Wolfgang Wohosfki.

Factorization in generalized power series
Noa Lavi1
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SPEAKER: Noa Lavi.

A classical tool in the study of real closed fields are the fields K((G)) of generalised
power series (i.e., formal sums with well-ordered support) with coefficients in a field K
of characteristic 0 and exponents in an ordered abelian group G. We generalize previous
results about irreducible elements and unique factorization in the subring K((G≤0)).
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We study fibrations arising from indexed categories of the following form: fix two
categories A,X and a functor F : A × X → X , so that to each FA = F (A,−) one can
associate a category of algebras AlgX (FA) – or an Eilenberg-Moore, or Kleisli category
if each FA is a monad. If

∫
F is the Grothendieck construction applied to F , we call the

functor
∫
F → A (whose typical fibre over A is the category AlgX (FA)) the fibration

of algebras obtained from F . Examples of such constructions arise in disparate areas
of mathematics (the theory of formal languages, categorical logic, algebraic geometry
and topology, computer science), and are unified by the intuition that

∫
F is a form of

semidirect product A ⋉F X of the category A, acting on X , via the functor F : A ×
X → X . This allows to draw an unexpected connection between representation-theoretic
techniques and intuitions, and type-theoretic ones.

Let A,X be two categories and F : A × X → X be a functor. Consider the assign-
ments

• A 7→ Alg(FA) where FA := F (A,−) : X → X is the functor ‘saturated’ in the
parameter A and Alg(FA) is its category of endofunctor algebras.

• Assuming that each FA is a monad, and that a morphism u : A → A′ induces
a monad homomorphism Fu : FA′ ⇒ FA, A 7→ EM(FA) where the latter is the
Eilenberg-Moore category of FA.

These define contravariant pseudofunctors Aop → Cat which, as such, determine fi-
brations over A, that we call respectively the endofunctor algebra fibration, and the
Eilenberg-Moore fibration of F ; we denote the domain of the fibration so obtained as
A⋉F X or simply A⋉X whenever F (the ‘representation’ of A on X ) is clear from the
context.

Similar constructions provide the coEilenberg-Moore, coKleisli, endofunctor alge-
bra. . . fibrations and opfibrations for a suitable parametric endofunctor F .

Among many examples of this construction we find:

• the fibration of modules [7] introduced by Quillen to study the cohomology of rings;
this has A = Mon(X ) and X a (symmetric) monoidal category; we consider the
Eilenberg-Moore fibration of algebras for the parametric monad A⊗ _.

• the simple fibration [5, 4] known to type theorists, when X = A is a Cartesian
category acting on itself as A 7→ A × _; we consider the coKleisli fibration of the
parametric comonad A× _.⋆

⋆This should be seen as a categorified analogue of the regular representation action of each monoid on
itself.
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• the fibration of points [? 2, 1], obtained as evaluation at the terminal object for
X⇆′ → X from the freestanding split-epi category; a certain type of Eilenberg-
Moore fibration captures the notion of protomodular category.

• the action of the category A of groups on the category X of k-Lie algebras given
by G 7→ k[G] ⊗ _; if we consider the Eilenberg-Moore fibration we get the cele-
brated Cartier-Gabriel-Konstant decomposition [3, 5.10.2] of the category ccHopfk
of cocommutative Hopf k-algebras as semidirect product Grp ⋉ Liek.

The present talk is meant to introduce the following theorems:

Theorem 1. There exists a representation P of Grp on itself such that the semidirect
product construction for monoids and groups is a functor (G,H) 7→ G ⋉ H : Grp ⋉P

Grp → Grp, which is a left adjoint. In the case of groups, the right adjoint is simply
rc : G 7→ (G,G, c : G · G → G) where c is the conjugation action and G · G is the free
product of |G| copies of G.

Theorem 2. Let X ,A have a zero object; let T : A × X → X be a parametric monad;
then there is a short exact sequence

1 // X Φ // A⋉T X
pT // A // 1

of left adjoint functors.

More in detail, the functors are obtained in the following way:

• pT is the fibration of algebras generated by T and its right adjoint is given by fi-
brewise choice of the zero object 0A (regarded as terminal) in each fiber A⋉ X =:
(pT )−1A;

• Φ chooses the free algebra (T∅X,µ∅
X) in the fiber over the zero object 0 (regarded as

initial), and its right adjoint V is determined by the forgetful sending a TA-algebra
(X, ξA : TAX → X) to X;

• 1→ X and A → 1 are left adjoints, given that both X ,A have a zero object.

This provides backup for the notation A⋉T X , since one can really imagine the category
A ⋉ X as obtained from the semidirect product of A acting on X via the representation
T , or in other words as an extension of A by X given by T .

Moreover, A⋉T X is (2-)functorial on a (2-)category Cat⋉ℓ Cat→ Cat having

1. objects the triples (A,X , F ) where F : A×X → X is an endofunctor;

2. 1-cells are oplax morphisms of algebras i.e. pairs (U, V, δ) : (A,X , F )→ (B,Y , G)
where U : A → B, V : X → Y are functors and δ is a 2-cell filling the diagram
below.

A×X F //

U×V
��

X
U
��

B × Y
G
// Y

?Gδ
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3. 2-cells (U, V, δ) ⇒ (U ′, V ′, δ′) are pairs ω : U ⇒ U ′, ν : V ⇒ V ′ of natural
transformations such that the following equality of pasting 2-cells holds.

A×X F //

����

X

=V

��

A×X F //

��

X

����
A× Y

+3ω×ν

G
// Y

?Gδ

A× Y
G

// Y

?Gδ′ +3ν

The category so defined arises as the fibration of lax algebras for the ‘lax regular rep-
resentation’ Cat × Cat → Cat of the 2-category Cat on itself: in other words, to each
endofunctor A × _ of Cat we associate the category of oplax algebras having objects,
1-cells, 2-cells as in 1,2,3 above.

Theorem 3. The correspondence (A,X ) 7→ A⋉ X is a 2-functor _ ⋉ _ : Cat⋉ℓ Cat→
Cat.

Startin from Theorem 3 we can find a functor

A⋉ X ⟨p,V ⟩ // A×X

with a left adjoint L; then, invocation of Beck’s monadicity theorem, or a straightforward
direct check, show that A ⋉ X is the Eilenberg-Moore object of the monad ⟨p, V ⟩ ◦ L
generated by this adjunction, in the 2-category of fibrations over A, over the object (A×
X , πA) (the ‘trivial fibration’ that projects (X,A) on A); indeed, the data of a monad like
this amount exactly to a family UA : EA → X of monadic functors, realizing each of the
EA as the category of algebras of a monad TA : X(=π−1A) → X(=π−1A).

An immediate consequence of this, is that limits inA⋉T X are created in the product
A×X , and thus are computed as follows:

• consider a diagram D : J → A⋉T X , made of triples (AJ ;XJ , ξJ);

• compute the limit A := limAJ in A, and reindex the AJ -algebra (XJ , ξJ) into
the fiber over A using the reindexings u∗J : EM(TAj

) → EM(TA) induced by the
terminal cone uJ : A→ AJ ;

• compute the limit of u∗J(XJ , ξJ) in EM(TA) (i.e., in X ).

Extending this characterization, one notices that a parametric monad T : A × X → X
is nothing but a 1-cell in the coKleisli 2-category of the 2-comonad A × _; and that the
presence of units ηAX : X → TAX and multiplication µA

X : TATAX → TAX for every
(A,X) ∈ A× X amounts to a pair of 2-cells in the same coKleisli 2-category.

Putting all together we have:

Theorem 4. The following conditions are equivalent for a fibration p : E → A:

• E ∼= A⋉ X for a parametric monad T : A×X → X ;

• p is monadic over the trivial fibration πA : A×X → A.

Hence, the following pieces of data are equivalent:
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• a parametric monad T : A×X → X , i.e. (upon currying) a functorA → [X ,Xµ];

• a monad T : (A×X , πA)→ (A×X , πA) in the 2-category Fib(A);

• a monad T : A × X → X in the 2-coKleisli category of the 2-comonad A × −,
over the object X ;

• a monad in the (domain of the) 2-fibration Cat⋉ℓ Cat of Theorem 3.

Theorem 5. Let X ,A be categories with an initial and a terminal object. Consider the
category Fib0,1(A) of fibrations over A admitting an initial and a terminal object, and
the category of reduced parametric monads over A, i.e. such that T (∅,−) is the identity
functor. Then there is an adjunction

Fib0,1(A)
//

⊥ RedMnd(A)oo

whose unit ηp is an equivalence iff p is the Eilenberg-Moore fibration of a parametric
reduced monad T .

Proof. The assumptions on a fibration p : E → A in Fib0,1(A) are sufficient to write the
following diagram:

E∅ oo
iR

⊥
i //
E

⟨p,iR⟩
��

p
//⊥

oo pL

A

E∅ ×A

from which we obtain a left adjoint for ⟨p, iR⟩ as coproduct i+ pL : (Y,A) 7→ iY + pLA;
then the monad of this adjunction is a (reduced, parametric) monad

E∅ ×A
i+pL // E ⟨p,iR⟩ // E∅ ×A

where the parameters A act on the fiber E0 of p over the initial object 0.
Conversely, every reduced parametric monad T : A × X → X has a fibration of

Eilenberg-Moore algebras, which is in fact an object of Fib0,1(A).

Note that:

• the correspondence so defined is a 2-adjunction, as it is defined (on 1- and) 2-cells;

• it is simply through a direct computation that one shows that the counit of this ad-
junction, sending a fibration of EM-algebras, to a parametric monad, and then to the
fibration of EM-algebras of that monad, recovers the same fibration (the universal
property of an EM-object plays an essential role).

This presents, and expands on, results of a work in progress with: Danel Ahman (Uni-
versity of Tartu, Estonia); Davide Castelnovo (Università degli studi di Padova); Greta
Coraglia (Università degli Studi di Milano); Nelson Martins-Ferreira (Politécnico de
Leiria, Portugal); Ülo Reimaa (University of Tartu, Estonia).
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SPEAKER: Lorenzo Luperi.

We introduce self-divisible ultrafilters, which we prove to be precisely those w such
that the weak congruence relation ≡w introduced by Šobot is an equivalence relation on
βZ. We provide several examples and additional characterisations; notably we show that
w is self-divisible if and only if ≡w coincides with Šobot’s strong congruence w, if and
only if the quotient (βZ,⊕)/w is a profinite group. We also construct an ultrafilter w such
that ≡w fails to be symmetric, and describe the interaction between the aforementioned
quotient and the profinite completion Ẑ of the integers.

This is a joint work with Mauro Di Nasso, Rosario Mennuni, Moreno Pierobon and
Mariaclara Ragosta.
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The atomic formulas of a logic are decidable if they satisfy the law of excluded middle,
namely P ∨ ¬P is a theorem. The atomic formulas of a logic are stable if the satisfy the
law of double-negation elimination, namely ¬¬P ⊃ P is a theorem. While in classical
logic decidability and stability coincide, in intuitionistic logic we may have stable atomic
formulas that are not decidable. In [2] decidability is formulated a sequent-calculus rule
corresponding to the law of excluded middle for atomic formulas:

P ⇒ C ¬P ⇒ C
Γ⇒ C

dc

It is shown that when such a rule is added on top of the rules of the single-succedent
calculus for propositional intutionistic logic Int, then the resulting calculus Int + dc is
complete for classical propositional logic. Similarly, stability is formulated as a rule
corresponding to the law of double-negation elimination for atomic formulas:

¬P,Γ⇒ ⊥
Γ⇒ P

st

However, Int + st is not complete for classical propositional logic, since the sequent
⇒ P ∨ ¬P is not derivable in Int + st. And since the rule st is admissible in Int + dc,
it follows that Th(Int + st) ⊂ Th(Int + dc). At the same time, we also have Th(Int) ⊂
Th(Int+ st), since the sequent⇒ ¬¬P ⊃ P is derivable in Int+ st but clearly not in Int.
This is why Int+ st can be legitimately thought of as an intermediate logic, called stable
logic in [2].

In this work I introduce a stronger form of stability, inspired by the law of classical
logic (¬P ⊃ P ) ⊃ P known as known as consequentia mirabilis [1]. By proceeding in a
parallel fashion as in [2], we may consider extending Int with a rule corresponding to the
consequentia mirabilis for atomic formulas:

¬P,Γ⇒ P
Γ⇒ P

cm

The calculus Int + cm, too, is incomplete for classical propositional logic. Hence,
Th(Int + cm) ⊂ Th(Int + d). At the same time, Int + cm is deductively stronger than
Int+ st, in the sense that Th(Int+ st) ⊂ Th(Int+ cm). Indeed, the rule st is admissible
in Int+ cm but the sequent⇒ (¬P ⊃ P ) ⊃ P is not derivable in Int+ st. This motivates
the study of a novel intermediate logic based on the consequentia mirabilis understood as
a stronger form of stability. While I will focus mostly on the proof-theoretic properties of
the calculus Int+ cm (cut elimination, admissibility of the structural rules), I will also try
to suggest, at least conceptually, that stability can be considered as weak form of strong
stability just like the weak excluded middle is a weak form of of excluded middle.
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We propose an encoding of Bayesian network (BN) in proof nets (PN) of linear logic.
Modularity of PNs allows to express efficiently graphical reasoning on probabilities as
factorization of the joint probabilities of BNs.

Introduction

The role of graphs in probabilistic and statistical modeling [9] is multiple: they fa-
cilitate both the representations of joint probability functions and the efficient inferences
(or reasoning) from observations. Graphical probabilistic models exploit both probabil-
ity theory and graph theory. Graphs grasp the qualitative part of model: nodes represent
events/random variables, edges represent dependencies between them, and conditional
independence can be seen in graph. Probability grasps the quantitative part of model:
local information about nodes and its neighbors, the strength of dependency, way of in-
ference, ecc.. Similarly, the role of graphs in logical proofs modelling presents notable
advantages: they simplify the syntactical representation of proofs and they facilitate well
known proof-theoretical procedures as e.g. proof construction (or proof search) and proof
reduction (or cut elimination).

Bayesian Networks [9, 2] are elegant and efficient graphical representations of prob-
ability distributions over random (discrete) variables. They are widely used in Artificial
Intelligence and Machine Learning for different purposes such as automatic text classifi-
cation, spam detection, sentiment analysis, supporting medical diagnosis, etc.. Bayesian
Networks are very useful for inferring (or deducing) the probability of some events from
other observed events (evidences). For this reason it appears natural to try to encode
Bayesian Networks in logical systems in which it is possible to formalize reasoning on
probabilities. Integration of Bayesian networks and first-order logic have been widely
investigated, see e.g. [10], although it seems quite natural to express Bayesian Networks
in classical propositional logic.
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In this work we show a correspondence between (Boolean) Bayesian Networks and a
special class of Proof Nets of the multiplicative-additive (MALL) fragment with Mix rule
of propositional Linear Logic [3, 6], a constructive refinement of Classical Logic: this is
called the class of Bayesian Proof Nets.

Proof Nets are a graphical syntax that allow the demonstrations of linear logic to be
expressed in a modular and parallel way, abstracting away from the often useless bureau-
cracy of the sequent calculus. Actually, it is not a novelty to propose variants of proof nets
inspired by the methodologies used in Machine Learning or more in general by Artificial
Intelligence as e.g. the neural variant of proof nets based on Sinkhorn networks by [5].

The novelty of Bayesian Proof Nets is given by the fact they are special Proof Nets en-
dowed with a probability distribution over the set of "switchings" (slices) associated to the
Proof Nets. Switchings are kinds of interactive tests that play a double role: (i) they de-
tect the "correctness" of any given PN and (ii) they infer the (joint) probability distribution
associated to a PN from the (conditional) probability distribution associated to the links
which the PN is built on. We know [9] that any BN N with n random (discrete) variables
A1, ..., An expresses the joint probability Pr(A1, ..., An): here we show that N can be
encoded by a probabilistic PN πN built by n special Bayesian links: exactly one Bayesian
link αi encodes a random variable/node Ai of N; then, each additive slice S(π) (consist-
ing of an appropriate mutilation of each B-link of π) corresponds to the factorization of
the joint probability that is: Pr(A1, ..., An) =

∏n
i=1 Pr(Ai | Pa(Ai)) =

∏n
i=1⟨S(αi)⟩

where "⟨S(αi)⟩" denotes the conditional probability associated to any switched Bayesian
link S(αi).

An extended and detailed version of this work can be found in [8] (accepted paper at
DCAI2024 https://www.dcai-conference.net/).

Supported by the INdAM-GNSAGA Research Group.
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The π-calculus is a process calculus that models channel names communication be-
tween several participants [21]. It is considered to be the formal language of concurrent
computation in the same way the λ-calculus is considered to be the one of functional pro-
gramming. The grammar includes primitives for implement parallel composition, choice
between actions and scope restriction, allowing the description of distributed systems.
Despite its simple design, functional programming can be encoded in it as well as higher
order process-passing calculi.

Figure 1: Syntax and semantics of the π-calculus.

In this talk we discuss the language of the recursion-free fragment of the π-calculus
(as presented in [6]) under the lens of proof theory. For this purpose, we introduce the
sequent calculus PiL, an extension of Girard’s first order multiplicative and additive linear
logic MALL1 [7] where sub-exponential modalities (as the ones studied in, e.g., [10, 11]),
a non-commutative non-associative connective (◀), and nominal quantifiers (И and Я) are
introduced to model specific operational behaviors of the operators of the π-calculus.

76

https://hal.science/hal-04535773
https://hal.science/hal-04535773


Figure 2: Formulas and sequent rules in PiL.

We then show that the language of π-calculus can be embedded in the language of
PiL, and that the linear implication (⊸) captures the reduction semantics. More precisely

P → P ′ “via Com” =⇒ ⊢PiL [[P ]]′⊸ [[P ]]
P → Pℓi “via the same Choice for each i” =⇒ ⊢PiL

˘n
i=1

(
[[P ]]ℓi

)
⊸ [[P ]]

(0.3)

Moreover, we prove that provability in PiL decides deadlock-freedom. That is, A process
P is deadlock-free iff ⊢PiL [[P ]].

The interest in this novel logical framework for the study of safety properties for
processes, based on a logic-programming interpretation of proofs (as in [2, 1]) instead
of the Curry-Howard interpretation used in session types (see [3, 12]), is that it allows
a simpler logical characterization of deadlock-freedom with respect to the one provided
by the correspondence “typeable = deadlock-free” in session types which requires either
to restrain the language of the process calculus (as in [3, 12, 4]), or to introduce heavy
annotations in types (as in [5, 8]).
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Conditional expressions are central in representing knowledge and reasoning. Condi-
tional reasoning indeed features in a wide range of areas including non-monotonic rea-
soning, causal inference, learning, and more generally reasoning under uncertainty. A
conditional statement is a hypothetical proposition of the form “If [antecedent] is the case,
then [consequent] is the case”, where the antecedent is assumed to be true. Such a notion
can be formalized by expanding the language of classical logic by a binary operator a/b
that reads as “a given b”. A most well-known approach in this direction is that of Stal-
naker [4, 5], further analyzed also by Lewis [2], that in order to axiomatize the operator
/ ground their investigation on particular Kripke-like structures. In this contribution we
base our approach instead in the algebraic framework, in a line of investigation initiated
in [1].
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The novel approach we propose here is grounded in the algebraic setting of Boolean
algebras, where there is a natural way of formalizing conditional statements. Indeed,
given a Boolean algebra B and an element b in B, one can define a new Boolean algebra,
say B/b, intuitively obtained by assuming that b is true. More in details, one considers
the congruence collapsing b and the truth constant 1, and then B/b is the corresponding
quotient. Then the idea is to define a conditional operator / such that a/b represents
the element a as seen in the quotient B/b, mapped back to B. The particular structural
properties of Boolean algebras allow us to do so in a natural way.

First, we assume the algebra B to be finite. Then, if b ̸= 0 the quotient B/b is actually
a retract of B, which means that if we call πb the natural epimorphism πb : B → B/b,
there is an injective homomorphism ιb : B/b → B such that πb ◦ ιb is the identity map.
The idea is then to consider

a/b := ιb ◦ πb(a). (0.4)

We observe that the map ιb is not uniquely determined, meaning that there can be different
injective homomorphisms ι, ι′ such that πb ◦ ι = πb ◦ ι′ is the identity. Now, in order to
be able to define an operator / over the algebra B, one needs to consider all the different
quotients, determined by all choices of elements b ∈ B. Then, if 0 ̸= b ≤ c, by general
algebraic arguments one gets a natural way of looking at nested conditionals; indeed it
holds that (B/c)/πc(b) = B/b, which means that B/b is a quotient of B/c, and actually
also its retract. It is then natural to ask that the choices for ιb and ιc be compatible, in the
sense that there is a way of choosing the embedding ιπc(b) so that

ιb = ιc ◦ ιπc(b), (0.5)

which yields in particular that a/b = (a/b)/c whenever b ≤ c.
The case where b = 0 needs to be considered separately, since the associated quotient

is the trivial algebra that cannot be embedded into B. Since intuitively we are considering
the quotients by an element b to mean that “b is true”, the ex falso quodlibet suggests that
we map all elements to 1, i.e:

a/0 := 1. (0.6)

The idea is then to use Stone duality to translate the above conditions to the dual setting;
in other words, we generate the intended models as algebras of sets.

To this end, by the finite version of Stone duality, we now see the algebra B as an
algebra of sets, say that B = (X) for a set X . Then the above reasoning translates to the
following. Given Y X , the natural epimorphism πY : (X)→ (Y ) dualizes to the identity
map Y : Y → X , and the embedding ιY : (Y ) → (X) dualizes to a surjective map
fY : X → Y , such that fY ◦Y =Y ; in other words, we are asking that fY restricted to Y is
the identity. Moreover, consider Y ZX . Then the compatibility condition (0.5) becomes
on the dual fY = fZ

Y ◦ fZ , where fZ
Y is the dual of the map ιπZ(Y ). The intended models

are those that originate by the above postulates; let us be more precise.

Definition 1. Given a set X , we say that a class of surjective functions F = {fZ
Y : Z →

Y : ∅ ≠ Y ZX} with fZ
Y : Z → Y is compatible with X if:

1. fX
Y restricted to Y is the identity on Y ;

2. fX
Y = fZ

Y ◦ fX
Z .
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We now define the class of intended models as algebras of sets.

Definition 2. An intended model is an algebra with operations {∧,∨,¬, /, 0, 1} that is
a Boolean algebra of sets (X) for some set X with / defined as follows from a class of
functions F compatible with X:

Y/Z := (fX
Z )−1(Y ∩ Z)

for any Y, ZX and Z ̸= ∅, and for any Y X we set Y/∅ := X.

We then analyze the algebraic properties of the intended models and the variety they
generate, showing also an interesting connection with Stalnaker’s approach to condition-
als.
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Bi-intuitionistic logic bi-IPC is the conservative extension of (propositional) intuition-
istic logic IPC obtained by adding a new binary connective ← to the language, called
the co-implication, which behaves dually to →. In this way, bi-IPC reaches a symme-
try, which IPC lacks, between the connectives ∧,⊤,→ and ∨,⊥,←, respectively. Fur-
thermore, thanks to the co-implication, bi-IPC achieves significantly greater expressivity
than IPC. For instance, if the points of a Kripke frame M are interpreted as states in
time, the language of bi-IPC is expressive enough to talk about the past, something that
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is not possible in IPC. This feature is captured by the transparent interpretation of co-
implication provided by the Kripke semantics of bi-IPC [11], since M, x |= ϕ ← ψ iff
∃y ≤ x (M, y |= ϕ and M, y ̸|= ψ).

The greater symmetry of bi-IPC when compared to IPC is reflected in the fact that
bi-IPC is algebraized in the sense of [1] by the variety bi-HA of bi-Heyting algebras [10],
i.e., Heyting algebras whose order duals are also Heyting algebras. As a consequence, the
lattice of bi-intermediate logics (i.e., consistent axiomatic⋆ extensions of bi-IPC) is dually
isomorphic to that of nontrivial varieties of bi-Heyting algebras. The latter, in turn, is not
only amenable to the methods of universal algebra, but also from those of duality theory,
since the category of bi-Heyting algebras is dually equivalent to that of bi-Esakia spaces
[5], see also [1].

In [2], we began studying extensions of the bi-intuitionistic Gödel-Dummett logic
bi-GD := bi-IPC+(p → q) ∨ (q → p), the bi-intermediate logic axiomatized by the
Gödel-Dummett axiom (also known as the prelinearity axiom). Over IPC, this formula
axiomatizes the well-known intuitionistic linear calculus LC := IPC+(p→ q)∨ (q → p)
(see, e.g., [4, 6, 8, 7]). While both logics are Kripke complete with respect to the class
of co-trees (i.e., posets with a greatest element and whose principal upsets are chains),
notably, the properties of these logics diverge significantly. For example, while LC has
only countably many extensions, all of which are locally finite, we proved that bi-GD
is not locally finite and has continuum many extensions. Moreover, LC is also Kripke
complete with respect to the class of chains, whereas we showed that the bi-intermediate
logic of chains is a proper extension of bi-GD (namely, the one obtained by adding the
dual Gödel-Dummett axiom ¬[(q ← p) ∧ (p ← q)] to bi-GD). This strongly suggest that
the language of bi-IPC is more appropriate to study tree-like structures than that of IPC
(since we work with a symmetric language, all of our results can be dualized to the setting
of trees in a straightforward manner).

One notable extension of bi-GD is Log(FC) := {φ : ∀n ∈ Z+ (Cn |= φ)}, the
logic of the finite combs (i.e., finite co-trees whose shape resembles that of a comb, see
Figure 1). We showed in [2] that if L is an extension of bi-GD, then L is locally finite iff
L ⊈ Log(FC). Consequently, Log(FC) is the only pre-locally finite extension of bi-GD
(i.e., it is not locally finite, but all of its proper extensions are so). More recently, we found
a finite axiomatization for Log(FC), using Jankov and subframe formulas (the theories
of these types of formulas for bi-GD were developed in [2, 9]). Since, by definition, this
logic has the finite model property, we can conclude that the problem of determining if a
recursively axiomatizable extension of bi-GD is locally finite is decidable.

In this talk, we will cover the main steps of our recent proof. Namely, we will provide
a characterization of the bi-Esakia duals of the finitely generated subdirectly irreducible
algebras which validate bi-GD plus three particular Jankov formulas and one subframe
formula. We will then present a combinatorial method we developed which can be used
to show that the variety generated by the aforementioned algebras has the finite model
property. This allows us to infer that Log(FC) coincides with the extension of bi-GD
axiomatized by the above mentioned Jankov and subframe formulas.

⋆From now on we will use extension as a synonym of axiomatic extension.
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Implicative algebras have been introduced by Miquel in [3] in order to provide a unify-
ing notion of model, encompassing the most relevant and used ones, such as realizability
(both classical and intuitionistic), and forcing. In particular, implicative algebras can be
seen both as generalizations of locales and of partial combinatory algebras.

In this talk we will show how various notions can be generalized to implicative alge-
bras, by adopting these perspectives.

By looking at implicative algebras as generalizations of locales, one can express topo-
logical concepts in a very wide framework. In this talk we will focus in particular on
notions of supercompactness and connectedness.

At the same time, by seeing an implicative algebra as a generalized partial combina-
tory algebra, one can concentrate on computational concepts and extend them to arbitrary
implicative algebras. In particular, we will show that some categorical structures which
were introduced in the context of the effective topos [1] and (more in general) of real-
izability toposes (see e.g. [4]) can be adequately rephrased in the wider context of im-
plicative algebras. In particular, we will abstract the notion of a category of assemblies,
partition assemblies, and modest sets to arbitrary implicative algebras, and thoroughly
investigate their categorical properties and interrelationships. This work is mainly based
on [2].
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I will talk about joint work with P. Andújar Guerrero and P. Eleftheriou on regarding
the following question: is it true that, in o-minimal theories, every global invariant type is
dominated by the product of finitely many orthogonal 1-types?

I will discuss the background of the problem, its solution in certain special cases, and
the connection with recent work of P. Andújar Guerrero, M. Thomas and E. Walsberg on
cofinal curves in definable preorders.
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An Abelian lattice-ordered group (ℓ-group, for short) is an Abelian group G endowed
with a lattice order that is translation invariant. An ℓ-group is called unital if it contains an
element u, such that for any positive g ∈ G there exists a natural number n for which the
n-fold sum of u exceeds g. A state of a unital ℓ-group is a normalized and positive group
homomorphism in R. It is well known that states correspond to expected-value operators
on bounded real random variables. Unital ℓ-groups are not first-order definable, yet they
are categorically equivalent to the equational variety of MV-algebras [1]. Thus, states can
be studied in an equational setting by looking at their counterpart in MV-algebras, as first
proposed in [9]. However, since states on MV-algebras are defined as particular maps into
the real unit interval [0, 1], a completely algebraic characterization was still missing.

Efforts to find an algebraic theory of states continued in [5] (see also [2]). There the
authors introduced the notion of internal state as an additional unary operation with spe-
cific axioms relating it to the other MV-operations. This framework was used to provide
an algebraic treatment of the Lebesgue integral. A drawback of this approach is that an
internal state can be applied to itself. More recently, a different approach has been pro-
posed. In [6] the authors first extend Mundici’s equivalence between unital ℓ-groups and
MV-algebras to an equivalence between states between ℓ-groups and states between MV-
algebras. Secondly, they introduce the class of equational states as a two-sorted variety
of algebras. An equational state (A1,A2, s) is a two-sorted algebra in which each sort
A1 and A2 is an MV-algebra with customary operations and the state-operation s has A1

as domain and A2 as codomain. This approach opens the way to studying probabilistic
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notions with algebraic tools; for instance, [6, Theorem 4.1] gives a characterization of
free equational states.

Another reason for considering the class of equational states is that they provide an
algebraic semantics to the probabilistic logic FP(Ł,Ł). The system FP(Ł,Ł) is a two-
layer logic introduced in [4] to provide a formal framework to deal with the probability of
vague events. If a vague event is codified by a formula φ in Łukasiewicz logic, its prob-
ability is given by the formula □(φ), which is a Łukasiewicz atomic formula interpreted
as "φ is probable".

An adaptation of the classical Lindenbaum-Tarski construction produces an equational
state ESVar with the following properties.

Theorem 1 ([7, Theorem 8]). Let Var be a (one-sorted) set of propositional variables.
For any FP(Ł,Ł) formula Φ, the following are equivalent.

1. Φ is a theorem.

2. Φ is valid in the equational state ESVar.

3. Φ is valid in all equational states.

Corollary 2 ([7, Theorem 15]). The equational state ESVar is the free equational state
generated by (Var, ∅).

We present here a continuation of the algebraic study of equational states started in [8],
where it is proven that the lattice of ideals and the lattice of congruences of any equational
state are isomorphic (see [8, Corollary 2]). This isomorphism enables us to characterize
the subdirectly irreducible equational states as follows.

Theorem 3. An equational state (A1,A2, s) is subdirectly irreducible if and only if one
of the following is true:

1. A2 = ∅ and A1 is a subdirectly irreducible MV-algebra.

2. A2 is a subdirectly irreducible MV-algebra, and the state-operation is faithful, i.e.
s(x) = 0 implies x = 0.

Combining the characterization of subdirectly irreducible equational states with some
ideas of [3] we prove that two notable classes generate the variety of equational classes.

Theorem 4. The following classes generate the variety of equational states:

1. The class of all equational states of the type ([0, 1]W , [0, 1]), with W an arbitrary
set.

2. The class of finite equational states, i.e. equational states whose universe is finite
in each sort.
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SPEAKER: Gian Marco Osso.

I will address the classification of different fragments of the Galvin-Prikry theorem, an
infinite dimensional generalization of Ramsey’s theorem, in terms of their uniform com-
putational content (Weihrauch degree). This work can be seen as a continuation of [1],
which focused on the Weihrauch classification of functions related to the Nash-Williams
theorem, i.e., the restriction of the Galvin-Prikry theorem to open sets. We have shown
that most of the functions related to the Galvin-Prikry theorem for Borel sets of rank n
are strictly between the (n + 1)-th and n-th iterate of the hyperjump operator HJ, which
corresponds to the system Π1

1-CA0 in the Weihrauch lattice. To establish this classification
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we obtain the following computability theoretic result (along the lines of [2] and [3]): a
Turing jump ideal containing homogeneous sets for all ∆0

n+1(X) sets must also contain
HJn(X). Similar results also hold for Borel sets of transfinite rank. This is joint work
with Alberto Marcone.
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SPEAKER: Franco Parlamento.

On the ground of the general result in [5], we develop a proof theoretic analysis of
several extensions of the Dragalin’s G3[mic] sequent calculi ([1]) obtained by adding
rules for equality related to those introduced by H.Wang ([6]) and S.Kanger ([3]). In the
classical case we apply our results to the semantic tableau method for first order logic
with equality. In particular we establish that, for languages without function symbols,
in Fitting’s alternate semantic tableau method ([2]), strictness (which does not allow to
retain the formulae that are modified except for γ-formulae of course) can be imposed
together with the orientation of the replacement of equals provided the latter is allowed
on all atomic formulae and their negations. Furthermore we prove that the result holds
also for languages with function symbols provided strictness is not imposed on equalities,
leaving it open whether or not strictness can be imposed on equalities as well. Finally we
discuss to what extent the strengthened form of the nonlengthening property of Orevkov
known to hold for the sequent calculi with the structural rules ([4]) applies also to the
present context.
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SPEAKER: Marco Pedicini.

Lamping’s optimal algorithm is a graph-theoretic technique for the normalization of
λ-terms whereby a redex is never duplicated, so as to keep as low as possible the number
of beta-reduction steps. Although optimality for standard, deterministic λ-calculus has
been well understood through a large body of research, the situation is quite different
for the notion of optimality of non-deterministic λ-calculus in which the non duplication
constraint becomes much more intricate and subtle.

We investigate an open and challenging conceptual issue in the territory of non-
deterministic λ-calculus, namely the complete description of an optimal reduction strat-
egy for it. The adequacy of such description also raises some prospect of a sound interpre-
tation of quantitative execution in probabilistic programming languages along the lines of
the parallel model of execution. Optimal reduction for standard λ-calculus was defined
by Lévy in 1978 and implemented by Lamping at the end of eighties [Lév78], [Lam89]. It
turned to be connected to the Geometry of Interaction introduced by J.-Y. Girard to afford
a semantic picture of linear logic and to model the dynamics of cut-elimination algorithm
via a mathematical, syntax-free characterization of it [Gir89], [DR93]. We design an op-
timal reduction algorithm for non-deterministic λ-calculus and we establish its soundness
in the geometry of interaction setting. Moreover, we combine optimal reduction for non
deterministic λ-calculus with parallel execution as considered in [PQ07] and in [LPP19].

M. Pedicini is member of the “Gruppo Nazionale per le Strutture Algebriche, Ge-
ometriche e le loro Applicazioni – Istituto Nazionale di Alta Matematica” (GNSAGA–
INdAM).
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SPEAKER: Iosif Petrakis.

The theory of swap algebras and swap rings is a generalisation of the theory of
Boolean algebras and Boolean rings that originates from Bishop-style constructive math-
ematics (BISH) (see [1, 4]) and has non-trivial applications to classical mathematics
(CLASS) (see [3, 5]). Swap algebras and swap rings are introduced in [3] as abstract
versions of the class of complemented subsets and partial Boolean-valued functions, re-
spectively. Complemented subsets i.e., pairs of subsets which are disjoint in a strong
sense, were introduced by Bishop in [1] as an important tool in his constructive recon-
struction of measure and integration theory. As the powerset P(X) of a set X is clas-
sically bijective to the total Boolean-valued functions on X , the complemented power
set P)((X) of X is constructively bijective to the partial Boolean-valued functions on X
(see [6]). A Boolean algebra and a Boolean ring is a special case of a swap algebra and
a swap ring, respectively, and in [3] it is shown that the duality between swap algebras of
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type⋆ (II) and swap rings generalises the duality between Boolean algebras and Boolean
rings.

Here we extend our results in [3] presenting a constructive Stone representation theo-
rem for separated swap algebras of type (II) that has as a special case a constructive Stone
representation theorem for separated Boolean algebras.

There are two problems in the constructivisation of Stone representation theorem for
Boolean algebras. The first problem is the use of “points”. For example, if one wants
to define pointed Boolean-valued homomorphisms on P(X), then one needs to use the
principle of the excluded middle (PEM); if x0 ∈ X , then x̂0 : P(X) → 2, where 2 :=
{0, 1}, is defined with PEM by the rule

x̂0(A) :=

{
1, x0 ∈ A
0, x0 /∈ A.

It is with these Boolean-valued homomorphisms that one shows that P(X) is separated.
We call a Boolean algebra separated, if for every a ̸= 0 there is a Boolean-valued homo-
morphism ha on A with ha(a) = 1. If A ̸= ∅, then classically there is a point x0 ∈ A,
hence x̂0(A) = 1. If A := (A1, A0) is a complemented subset of set X with an ex-
tensional inequality, where A1, A0 are disjoint in a strong sense (see [3] for all details),
then one can define the above pointed Boolean-valued homomorphism, not on the whole
complemented powerset, but on its subset of all complemented subsets A for which their
domain A1 ∪ A0 contains x0, using the following rule and avoiding PEM

x̂0(A) :=

{
1, x0 ∈ A1

0, x0 ∈ A0.

With these partial, pointed Boolean-valued homomorphisms we show constructively that
P)((X) is a separated swap algebra of type (II), a notion that generalises the notion
of a separated Boolean algebra and involves the set Â of partial, Boolean-valued swap-
homomoprhisms of a swap algebra A of type (II). The following representation theorem
is shown constructively.

Theorem 1 (Stone representation theorem for separated swap algebras of type (II)). If
A is a separated swap algebra of type (II), then the assignment routine StoneStoneStone : A ⇝
P)((Â), where a 7→ StoneStoneStone(a), with

StoneStoneStone(a) :=
(
Stone1(a),Stone0(a)

)
,

Stone1(a) := {f ∈ Â | a ∈ dom(f) ∧ f(a) =2 1},

and
Stone0(a) := {g ∈ Â | a ∈ dom(g) ∧ g(a) =2 0},

is a total swap-embedding of A into the swap algebra P)((Â) of type (II).

The second problem in the constructivisation of the Stone representation theorem is
that one needs Zorn’s lemma to show that every Boolean algebra is separated (see [2],

⋆There are two types of swap algebras, as there are two algebras of complemented subsets i.e., two ways
to define their join and meet (see [6, 3]).
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p. 77). What we show here is that we do not need to employ some maximal object, only
to change the equality of A. In topology a similar attitude is followed in the theory of
the ring of continuous functions C(X) of a topological space X (see [7]), where from
the point of view of C(X) it suffices to restrict to completely regular topological spaces.
Similalrly, from the point of view of the theory of Â, it suffices to restrict to separated
swap algebras. We denote by (̂A,B) the set of partial swap-homomorphisms between
swap algebras A and B.

Theorem 2 (Stone-Čech theorem for swap algebras of type (II)). If (A,=A, ̸=A) is a swap
algebra of type (II), there is a separated swap algebra of type (II) (σA,=σA, ̸=σA) and
a total swap-homomorphism σA : A → σA, such that for every f ∈ Â there is a unique
σf ∈ σ̂A, such that the following left triangle commutes i.e., dom(σf) := {σA(a) | a ∈
dom(f)} and σf(σA(a)) =2 f(a), for every a ∈ dom(f).

A σA

2

A σA

B

σA

Â ∋ f σf ∈ σ̂A (̂A,B) ∋ h

σA

σh ∈ ̂(σA,B)

Also, for every h ∈ σ̂A there is a unique h′ ∈ Â, such that σh′ =σ̂A h, and hence
Â =V0 σ̂A i.e., the two sets are bijective. If (B,=B, ̸=B) is a separated swap algebra
of type (II), and h : A ⇁ B is a partial swap-homomorphism, there is a unique partial
swap-homomoprhism σh : σA ⇁ B, such that the above right triangle commutes i.e.,
dom(σh) := {σA(a) | a ∈ dom(h)} and σh(σA(a)) =2 h(a), for every a ∈ dom(h).
Also, for every h ∈ ̂(σA,B) there is a unique h′ ∈ (̂A,B), such that σh′ = ̂(σA,B)

h, and

hence (̂A,B) =V0
̂(σA,B).

We also present the corresponding Stone representation theorem for separated Boolean
algebras and the Stone-Čech theorem for Boolean algebras.
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Proof-theoretic semantics (henceforth, PTS) is a constructive, proof-based semantics
stemming from Prawitz’s normalisation results for natural deduction. In the original for-
mulation of PTS, due to Prawitz’s himself [4], proofs are understood as valid arguments.
An argument is a pair ⟨D , J⟩ such that

• D is a formula-tree of arbitrary inferences (that may bind top-nodes). Unbound
top-nodes Γ are the open assumptions of D , while the root A is the conclusion of
D . D is also called an argument structure from Γ for A. D is open when Γ ̸= ∅,
while it is closed otherwise. D is canonical when it ends by introduction, while it is
non-canonical otherwise. A (closed) instance of D is a (closed) Dσ resulting from
D through a substitution σ which replaces the open assumptions of D with (closed)
argument structures for those assumptions;

• J is a set of functions ϕ from and to argument structures such that, if D is from Γ
for A, ϕ(D) is from Γ∗ ⊆ Γ for A and, for every σ, ϕ(Dσ) = ϕ(D)σ.

Argumental validity is relativised to atomic bases B, i.e., sets of atomic rules of level
k of the form ([Γ1]/A1, ..., [Γn]/An)/B, where Ai, B are atomic and Γi/Ai is a rule of
level h < k—square brackets indicate binding. In the non-monotonic approach, the PTS-
validity of ⟨D , J⟩ on B is defined as follows:

1) if D is closed =⇒ by suitably applying the functions in J, D yields a canonical
argument structure whose immediate sub-structures are valid on B when paired
with J;

2) if D is open from assumptions A1, ..., An =⇒ for every closed Dσ
i for Ai which

is valid on B when paired with an extension J+ of J, the corresponding closed
instance of D is valid on B when paired with J+.

This is non-monotonic as there are ⟨D , J⟩ and B with ⟨D , J⟩ valid on B and, for some
extension B+ of B, ⟨D , J⟩ not valid on B+. The monotonic definition obtains through a
change in clause 2), by requiring the Dσ

i -s to be valid on arbitrary extensions of B. ⟨D , J⟩
is valid iff it is valid on all B-s. We say that Γ |=α

B A iff there is a B-valid ⟨D , J⟩ where
D is from Γ for A, and that Γ |=α A iff there is a valid ⟨D , J⟩ with D as above.

In the current mainstream approach to PTS, argument structures and reductions are left
out. This yields a sentential semantics, due to de Campos Sanz, Piecha and Schroeder-
Heister [2, 3], where Γ |=B A holds iff:
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a) Γ = ∅ =⇒

i) A atomic =⇒ A theorem in B;

ii) A = B ∧ C =⇒ |=B B and |=B C;

iii) A = B ∨ C =⇒ |=B B or |=B C;

iv) A = B → C =⇒ B |=B C;

b) Γ ̸= ∅ =⇒ (|=B Γ =⇒ |=B A).

This is again non-monotonic. The corresponding monotonic version obtains by modifying
clause b) so as to bring expansions of B in. A variant due to Sandqvist [5], which we
may indicate by Γ |=S

B A, defines the disjunction case in an elimination-like way, i.e., it
replaces clause iii) by

iii)∗ A = B ∨ C =⇒ for every atomic D, (B |=S
B D and C |=S

B D =⇒ |=S
B D).

Finally we say that Γ |= A [resp. Γ |=S A] iff, for every B, Γ |=B A [resp. Γ |=S
B A].

Here, the interest of Sandqvist’s variant lies in the fact that intuitionistic logic is complete
relative to the monotonic version of it when atomic bases have level ≥ 2 [5]—while it
is incomplete relative to monotonic |=, and to non-monotonic |= if atomic bases have
unlimited level [2, 3].

The relations among the three consequence-notions |=α, |= and |=S have been little
explored so far. This seems to be an interesting topic, though. |=α may be seen as a kind
of “witnessing", via suitable argument structures, of the holding of |= and |=S . In [1],
I investigated this relative to monotonic PTS, and proved some inversion results which
have relevant consequences relative to the completeness and incompleteness results for
|= or |=S mentioned above. Now I aim instead to discuss how those results extend to the
non-monotonic framework.

In particular I show that, if one has a sufficiently “loose" notion of function for manip-
ulating argument structures, |= and |=α are equivalent, both locally—i.e., Γ |=B A ⇐⇒
Γ |=α

B A—and globally—i.e., Γ |= A ⇐⇒ Γ |=α A. In the case of Sandqvist’s variant,
one can instead prove an inversion result such that, if |=S

B is always witnessed by |=α
B, one

can always extract a Sandqvist consequence from a given witnessing—namely if, for all
Γ and A, Γ |=S

B A =⇒ Γ |=α
B A, then for all Γ and A, Γ |=α

B A =⇒ Γ |=S
B A. At the

global level, we can give a sufficient condition, through notions of base-soundness and
base-completeness: a logic Σ is base-complete [resp. base-sound] on a proof-theoretic
consequence relation ⊩ iff, for all Γ, A and B, Γ ⊩B A =⇒ Γ ⊢Σ∪B [resp. Γ ⊢Σ∪B
A =⇒ Γ ⊩B A] [1]. Thus we obtain that Γ |=S A ⇐⇒ Γ |=α A is implied by the
existence of a Σ which be base-complete on |=S and base-sound on |=α. While the latter
is also a sufficient condition for the simple completeness of Σ on |=α, it can be proved
that Σ cannot be base-complete on any ⊩ if it enjoys the Export Principle—see [3] for the
definition of the Export Principle.

In a stricter reading of functions for operating on argument structures, the results we
obtain come to depend on the meta-logic we are using. With intuitionistic logic, |= and
|=α may not be equivalent, but we have inversion results similar to those for |=S and |=α.
With classical logic, |=α and |= are still locally equivalent. However, if we allow loose
functions again, classical logic can be proved to be sound and complete with respect to
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both |= and |=α—although under a stricter reading only completeness under substitutions
will hold. Interestingly, this stronger outcome may fail when functions are understood in
a suitably strict way (despite the meta-logic being classical).
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SPEAKER: Beatrice Pitton.

Generalized descriptive set theory (GDST) aims at developing a higher analogue of
classical descriptive set theory in which ω is replaced with an uncountable cardinal κ in
all definitions and relevant notions. In this talk, we work with functions f : X → Y
between κ-metrizable spaces X and Y of weight at most κ, where κ satisfies κ<κ =
κ > ω. In this context, we show that the κ+-Borel functions are the smallest collection
containing the continuous functions and closed under≤ κ-pointwise limits. We introduce
the definition of κ-Baire class ξ functions for 1 ≤ ξ < κ+ and, mirroring the well-
known characterization in classical descriptive set theory, we highlight the link between
κ-Baire class ξ functions and Σ0

ξ+1(κ
+)-measurable functions. This result follows from

a stronger theorem that characterizes Baire class 1 functions as ≤ κ-pointwise limits of
full functions, which are exceptionally simple Lipschitz functions. Finally, as in classical
descriptive set theory, we characterize continuous functions and Baire class 1 functions
through games.
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We present an algebraic characterization of T0-topological spaces in terms of pre-
orders describing a base for the space. In particular, we show that any T0-topological
space can be represented as the space whose points are the neighborhood filters of one
of its basis for the open sets. Conversely, we show that any dense family of filters on
a preorder defines a topological space whose characteristics are strictly connected to the
ones of the preorder. Therefore, we show how the separation properties of the topological
space can be described in terms of the algebraic properties of the corresponding preorder
and family of filters.
Furthermore, drawing on Orrin Frink’s article [1], we outline the algebraic conditions on
a selected base of the topological space ensuring that the space is compact and Hausdorff.
In his article, Frink proved that a space is Tychonoff if and only if it admits a normal base
for the closed sets of a space. If Z is a normal base for X , then the space of Z-ultrafilters
forms a Hausdorff compactification for X .
Following this approach, we show that every Tychonoff space can be described as the
space whose points are some minimal prime filters of a particular type of distributive lat-
tices. Furthermore, we show that the space obtained considering all the prime minimal
filters of it forms a Hausdorff compactification of the original Tychonoff space.
These results allows us to define a duality between the category of compact Hausdorff
spaces with continuous maps and a suitable category of lattices.
This is joint work with Matteo Viale.
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Schur’s Theorem (1916) states that for every finite coloring of N there exists a monochro-
matic triple a, b, a+ b. Several decades later, Folkman extended this statement by includ-
ing in a same color arbitrarily long sequences and all finite sums from them. A break-
through was made in 1974 by Hindman, who showed, in the same setting, the existence
of a unique infinite sequence such that all finite sums are monochromatic, and one year
later the theorem was extended to all associative operations.

In this talk we explore the case of exponentiation, first investigated by Sisto (2011)
and recently by Sahasrabudhe (2018). The latter proved a version of Folkman’s Theorem
for product and exponentiation at the same time. In our main theorem we realise for
the exponentiation the passage from finite to infinite made by Hindman for the sum, by
showing that for every finite coloring of N there exists an infinite sequence such that all
finite exponentiations are monochromatic.

We finally extend the theorem to a larger class of binary non-associative operations
which somehow behave in the same manner as exponentiation.

Our main tool is a very special type of ultrafilter, idempotent and minimal at the
same time. Elements of these ultrafilters, the so-called central sets, contain plenty of
combinatorial structure.

This is joint work with Mauro Di Nasso.

Correctness Criterion for Second Order Multiplicative Linear Logic
Adrien Ragot 13, Thomas Seiller12, Lorenzo Tortora de Falco3

1 Université Sorbonne Paris Nord, LIPN – UMR 7030 CNRS, France.
2 CNRS, France.

3 Università degli studi Roma tre, Rome, Italy.

SPEAKER: Adrien Ragot.

A. Ragot is supported by a VINCI PhD fellowship from the Franco-Italian Université.
T. Seiller is partially supported by the DIM RFSI project CoHOp, and the ANR ANR-22-
CE48-0003-01 project DySCo.

Correctness of Proof structures. Linear Logic was introduced by J.Y. Girard in 1987
together with the proof–structures – that we call nets and formalize as hypergraphs – graph
like objects which may or may not represent a proof. Formally, one can map proof trees
from the sequent calculus to proof–structures: this map is called the desequentialization,
proof structures which are the result of desequentialization are called proof nets or are said
to be correct. From a computational point of view the correctness of a net corresponds to
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verifying that it is correctly typed: a correct net which is typeableA is a net which behaves
as described by the formula A – in the sense of Realisability for Linear Logic see [8] – for
the multiplicative fragment one can look at [7]. Providing a procedure which identifies if a
net is correct is therefore a form of verification ensuring that the net behaves as described
by the (typing) formula under consideration. Such procedures are correctness criteria.

Correctness for MLL2. Many criteria exist for distinct fragments of linear logic such as
the long–trip criterion [5], Danos–Regnier (DR) criterion [4], contractibility [3], parsing
[1], or the counter proof criterion [2]. All these criteria follow a similar pattern: they can
be expressed for the fragment MLL and be extended to (some, if not all) other fragments of
LL (with more or less difficulty). In particular, we will provide correctness criteria for the
fragment MLL2

⋆, this fragment is less fortunate than others: currently, the only existing
criterion is that of J.Y. Girard given in [6], an adaptation of the Danos–Regnier criterion to
MLL2. We observe several downfalls of the criterion of J.Y. Girard and propose solutions
by providing two novel criterions – a simpler adaptation of the Danos–Regnier criterion
and a parsing criterion. The limitations of the currently existing criterion from [6] are the
following:

1. The nets are supposed typed – we will provide a criterion for untyped nets.

2. The conclusion of the nets must be closed formulas, it will turn out that this restric-
tion is not necessary in order to test correctness.

3. The desequentialization is difficult, without surprise the Danos–Regnier is not the
right tool to extract a proof from a net – to that end we will provide a parsing
criterion which can easily extract a proof from a parsing sequence,

4. The complexity is exponential (as the Danos Regnier criterion for MLL), and to
make it worse: the pointers of a ∀–link quantifying a propositional variable X
point at all the vertex where X occurs and so the number of switchings explodes
– we will identify a minimal set of pointers which is enough to ensure correctness,
furthermore the parsing criterion will enjoy a much better complexity (quadratic–
time).

Parsing criterion for MLL2. Technically, the first criterion we provide is the parsing
criterion from which we will deduce the DR–style criterion. We follow the spirit of the
solution proposed by Banach in [1] in particular we use generalised axioms (that we write
✠), and the parsing rules corresponds to rewriting that take place at the top of net rewriting
one or several generalised axioms in a single one. The criterion is following: a net can be
rewritten into a single generalised axiom if and only if it is correct. To reconstruct a proof
we annotate the generalised axioms with proofs from the sequent calculus then the proof
consists in: (1) Showing that for each parsing reduction the new daimon is still annotated
by a proof. (2) Show that the normal forms for anti–parsing of a single generalised axiom
annotated by a proof π is JπK which the desequentialization of π. (3) Noting that each
parsing redex is the desequentialization of a proof hence establishing that each correct net
can be contracted.

⋆that is Multiplicative Linear Logic with second order quantifiers.
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DR–style criterion. From the parsing criterion one can easily derive a DR–style crite-
rion. First we need to define the switchings: the ∀ links point on the output of generalised
axioms which contains the variableX , we make ∀ links switch between one of their point-
ers or their main input. However, the pointers must be rerouted to test correctness: a ∀
pointer go down the net until it encounters an ∃ pointer p then the ∀ pointer is rerouted
so that it now targets the source of p. Rerouting all the ∀–pointers and then performing
the switching of ∀ links and ` links yields a switching of the net. The theorem is then
the following: a net is correct if and only if all its switchings are acyclic and connected
(ACC). To prove this result we follow the idea proposed by Curien in [2]: (1) We show
that each parsing rule and anti parsing rule preserves the ACC property of switchings. (2)
We show that the only correct nets which are normal for the parsing rewriting are nets
made of only one generalised axiom.
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Understanding valued fields has historically been a game of finding the correct invari-
ants for their theories, reducing the possibly complicated valuational structure to some-
thing easier to understand and classify. Given a valued field (K, v), one can naturally look
at its value group ΓK and residue field k as possible (model-theoretic) invariants, in the
sense that one could hope to determine the theory of (K, v) using the theories of ΓK and k.
This concretized in the celebrated Ax-Kochen/Ershov results. A great industry has since
then blossomed, which seeks to generalize similar results in various directions. We tackle
one such possible way of making the question harder, namely we enrich the structure of
(K, v) with a valued field endomorphism σ. Under the assumption that σ is surjective
and that k has characteristic zero, Durhan and Onay ([3]) prove that quantifiers can be
reduced to the leading term structure RVK of the valued field (K, v), when endowed with
the induced automorphism σRV.

At the same time, a considerable bulk of work has been produced by Dor and Hrushovski
([1]), and later Dor and Halevi ([2]), to tackle the absolute version of these results, namely
identifying the model companion for the so-called ω-increasing case. Here, the assump-
tion of residue characteristic zero is dropped, leading to the richer structure (and hence,
harder problems) of twists of the automorphism produced by composing with Frobenius.

Our work uses techniques and insights from the ω-increasing world to remove the
assumption that σ is surjective from the work of Durhan and Onay (while we maintain the
assumption that σRV is surjective).

Theorem 1. Suppose (K, v, σ) is a weakly transformally henselian valued difference field
in equicharacteristic zero, such that σ(K) is relatively algebraically closed in K. Then,
in the natural two-sorted language enriched with λ-functions for K as a σ(K)-vector
space, (K, v, σ) eliminates quantifiers down to (RVK , σRV).
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The notion of ultracategory was introduced by Michael Makkai in [8] for the charac-
terisation of categories of models of pretoposes, an ample extension to (intuitionistic) first
order theories of Stone duality for Boolean algebras, providing a kind of Stone duality for
first order theories—aka conceptual completeness. Recently, Jacob Lurie refined that no-
tion in [7] producing another approach to the duality for pretoposes—the two notions of
ultracategory appear to be different, though no separating example has been produced yet.
All this suggests that there are already two forms of duality for first order theories, in line
with Esakia duality [4] as well as others, see [1, 2].

A excellent, radically new, approach to ultrafilters, ultraproducts, ultracategories, and
pretoposes can be found in [5] where the author also foresees a possible comparison of
the two original notions of ultracategories in future work.

In this work, we produce an algebraic notion of structured category which subsumes
the two kinds of ultracategories mentioned above. Technically, we introduce a colax idem-
potent pseudomonad on an ultracompletion 2-functor on the 2-category Cat of small
categories. Given a (small) category C, write U(C) for the category which consists of
following data:

Objects are triples (I,U , (ci)i∈I) where U is an ultrafilter on the set I , and (ci)i∈I is an
I-indexed family of objects in C.

An arrow [V, f, (gv)v∈V ] : (I,U , (ci)i∈I) → (J,V , (dj)j∈J) is represented by a triple of
a set V ∈ V , a function f : V → I such that the inverse image of a set in U is a
set in V⋆, and a family (gv : cf(v) → dv)v∈V of arrows in C. Two representatives
(U, f, (gv)v∈V ) and (U ′, f ′, (g′v)v∈V ′) are equivalent if gv = g′v for all v ∈ V ∩ V ′.

Composition of arrows is given componentwise.

Remark. Let T denote a terminal category. The ultracompletion U(T ) is (equivalent to)
the opposite of the category UF of ultrafilters of [5]. More generally, U(C) is equivalent
to

(
UFFam(Cop)

)op, where Fam is the usual coproduct completion of a category.
The assignment C � //U(C) extends to a 2-functor U : Cat //Cat, which we call

ultracompletion.
In the talk, we shall amply justify the need for this kind of technical details. Here, for

sake of completeness, we only introduce the rest of the structure on the ultracompletion
functor (write T for a fixed one-element set): for a fixed category C, the unit functor
νC : C //U(C) takes an object c to the triple (T, {T}, (c)) consisting of a one-object
family. The multiplication functor

U(U(C))
µC // U(C)

(I,U , (Ji,Vi, (cj)j∈Ji)i∈I)
� // (

∑
i∈I Ji,

∑
U Vi, (c(i,j))(i,j)∈∑i∈I Ji

)

⋆In other words, f−1 : ℘(I)→ ℘(J) maps U ⊆ ℘(I) into V ⊆ ℘(J), see [5].
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which employs the indexed sum of ultrafilters, see [5]. It is easy to see that they provide
the data for a pseudomonad U on Cat. Finally we introduce a natural family of natural
transformations

(I,U , ((T, T , (ci)))i∈I)

(I,U , (ci)i∈I)
5

//

	

//

U(C)

U(νC) //

νU(C)

//
U(U(C))•λC

OO

(T, T , (I,U , (ci)i∈I))

[I,!,[T,ki,(idci )]i∈I ]

OO

where ki : T → I is the constant function with value i.
Theorem. The quadruple U: = (U, µ, ν, λ) is a colax idempotent pseudomonad on Cat.

The ultracompletion functor can be connected with both notions of ultracategories.
For the sake of clarity, we shall denote by M-Ultcat, the 2-category of ultracategories,
ultrafunctors, and natural ultra-transformations in the sense of Makkai’s [8], and by L-
Ultcat, the 2-category of ultracategories, ultrafunctors, and natural ultra-transformations
in the sense of Lurie’s [7].
Proposition. Let C be a category.
(i) The category U(C) is an ultracategory in the sense of Makkai, and the 2-functor U :
Cat //Cat factors through the forgetful 2-functor M-Ultcat //Cat.
(ii) The category U(C) is an ultracategory in the sense of Lurie, and the 2-functor U :
Cat //Cat factors through the forgetful 2-functor L-Ultcat //Cat.
Corollary. Each U-pseudoalgebra U(C) α //C bears a structure of ultracategory in the
sense of Makkai, and a structure of ultracategory in the sense of Lurie, in such ways that
each assignment extends to a faithful 2-functor from U-PsAlg into M-Ultcat and into
L-Ultcat, respectively.

Finally, we have a result along the lines of Theorem 4.1 of [8].
Theorem. Let P be a pretopos. The evaluation functor ev : P //U(PreTop(P,Set),Set)
is an equivalence of categories.

The next steps will consider more closely the relationship between U-pseudoalgebras
and ultracategories in the sense of Makkai, the connections with the work of Garner’s in
[5], and the abstract part of duality in line with previous work as in [3, 6, 9].
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In predicative and constructive mathematics, new objects must often be constructed
via inductive or coinductive definitions to avoid circular definitions. In particular, this
applies in the predicative and constructive development of topology over a type-theoretic
foundation known as Formal Topology, ideated by P. Martin-Löf and G. Sambin [11, 12].

In Formal Topology, the main object of study is a point-free notion of topological
space in which two relations, called basic covers and positivity relations, primitively rep-
resent its open and closed subsets, respectively. To represent many natural topologies
such as Cantor topology, Baire topology, or the real numbers line, powerful techniques
for inductively generating basic covers and coinductively generating positivity relations
have been developed in [3, 13] and have since been a cornerstone of the field.

The (co)inductive methods of Formal Topology have been studied in [6] in the frame-
work of the Minimalist Foundation, a foundational theory for predicative and constructive
mathematics conceived in [8] and fully formalised in [5], which is compatible with all the
most relevant foundations for mathematics. In particular, it has been shown that the Mini-
malist Foundation extended with such methods can be interpreted using a realizability in-
terpretation á la Kleene in Aczel’s constructive set theory [1] extended with (co)inductive
definitions [2] (see also [1, 10]).

In this work, extending a previous joint work with M.E. Maietti [7], we show that
such results can be improved to a direct correspondence; namely, we show that inductive
basic covers (resp. coinductive positivity relations) are equivalent to inductive definitions
(resp. coinductive definitions) over the simple Minimalist Foundation. Our work then
makes use of the minimality of the Minimalist Foundation to extend the results in [4], and
compare the (co)inductive definitions of the Minimalist Foundation with those available in
other foundational theories, in particular with W-types and M-types of Martin-Löf’s type
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theory [9] in terms of (co)algebras of polynomial functors. Not surprisingly, this shows
that the Minimalist Foundation with inductive and coinductive definitions is exactly what
is needed to state and prove all the results of formal topology.
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A research programme developed over the last few years [9, 5, 8, 3, 7, 2, 1] has at-
tempted to single out the features of Boolean algebras that are responsible for them to
encompass virtually all the “desirable" properties one can expect from a variety of alge-
bras. The main results obtained so far on this topic revolve around the notion of Boolean
algebra of dimension n (nBA) and of the corresponding propositional logic. We provide
an overview of these results, with particular attention to recent developments related to
the propositional calculus of dimension n.

An n-partition of a set A is a tuple (A1, . . . , An) of pairwise disjoint subsets of A such
that

⋃n
i=1Ai = A. The set of n-partitions of A becomes an nBA by endowing it with n

constants e1 = (A, ∅, . . . , ∅), e2, . . . , en and an (n + 1)-ary operator q as follows, for all
n-partitions y0, . . . ,yi = (Y i

1 , . . . , Y
i
n), . . .y

n:

q(y0,y1, . . . ,yn) = (
n⋃

i=1

(Y 0
i ∩ Y i

1 ), . . . ,
n⋃

i=1

(Y 0
i ∩ Y i

n)).

The n-BAs are the abstract counterpart of the algebra of the n-partitions exactly in the
same way as the Boolean algebras are the abstract counterpart of the powerset of a set.
By the way, the powerset of A is nothing but the set of 2-partitions of A in disguise.
Similarly, the Boolean algebra of universe {0, 1} of classical truth values is replaced in
the n-ary case by the nBA of universe {1, ..., n}, representing the generalised truth values.

Varieties of nBAs happens to share many remarkable properties with the variety of
Boolean algebras. In particular, as showed in [7, 2]:

• All the elements of an nBA A induce a decomposition of A in n factors.

• all subdirectly irreducible nBAs of type τ have cardinality n; moreover, any nBA
of type τ is a subdirect product of algebras of cardinality n;

• any pure nBA (i.e. any nBA having no operation but q, e1, . . . , en) is a subdirect
power of the unique pure nBA n of cardinality n.

• for every n ≥ 2 and type τ , all nBAs of type τ having cardinality n are primal.
Moreover, every variety generated by an n-element primal algebra is a variety of
nBAs.
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In [2] the theory of n-BAs is put to good use to yield an extension to arbitrary semir-
ings of the technique of Boolean powers. We define the semiring power A[R] of an
algebra A by a semiring R, and show that any pure nBA A is a retract of the semir-
ing power A[BA] of A by what we call the inner Boolean algebra BA of A. Foster’s
celebrated theorem on primal algebras [4] follows as a corollary from this result.

In [3] the connection between a noncommutative version of Boolean algebras, called
skew Boolean algebras [6], and pure nBAs is explored. It is shown that any nBA is
obtained by appropriately merging n isomorphic skew Boolean algebras.

In [7] we focus on an application to logic. Just like Boolean algebras are the algebraic
counterpart of classical propositional logic CL, for every n ≥ 2 we define a logic nCL
whose algebraic counterpart are nBAs. We also prove that every tabular logic with a
single designated value is a sublogic of some nCL.

In [1] we have started to investigate the proof theory of nCL, by using the sequent
calculi nLK. We have shown the soundness and completeness of these calculi. Addition-
ally, as a corollary of a syntactic proof of completeness, we have obtained a result of cut
elimination.

A peculiar characteristic of nLK is that it has a unique connective, q, of arity n + 1.
The intended meaning of this connective is the following: the truth value of the formula
q(F,G1, . . . , Gn) is that ofGk, k being the truth value of F . When n = 2, this is the usual
interpretation of if_then_else(F,G1,G2).

Another distinctive feature of this deductive system is that each truth valus i has its
own turnstile ⊢i. In the two dimensional case, this gives rise to the turnstiles ⊢1 and ⊢2,
the former deriving tautologies, and the latter deriving contradictions. Entailements in the
various dimensions are symmetric. In the case n = 2, every formula F is equivalent to
q(F, e1, e2), whereas ¬F is equivalent to q(F, e2, e1). In the general case, q(F, e1, . . . , en)
is equivalent to F and there are

(
n
2

)
way of permuting two truth values, yelding

(
n
2

)
dif-

ferent negations.
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The study of word problems dates back to the work of Dehn in 1911. Given a re-
cursively presented algebra A, the word problem of A is to decide if two words in the
generators of A refer to the same element. Much is known about the complexity of word
problems for familiar algebraic structures: e.g., the Novikov-Boone theorem, one of the
most spectacular applications of computability to general mathematics, states that the
word problem for finitely presented groups is unsolvable. Yet, the computability theoretic
tools commonly employed to measure the complexity of word problems (e.g., Turing or
m-reducibility) are defined for sets, while it is generally acknowledged that many com-
putational facets of word problems emerge only if one interprets them as equivalence
relations.

In this work, we revisit the world of word problems, with a special focus on groups
and semigroups, through the lens of the theory of equivalence relations, which has grown
immensely in recent decades. To do so, we employ computable reducibility, a natural
effectivization of Borel reducibility.

This talk collects joint works with Uri Andrews, Valentino Delle Rose, Meng-Che Ho,
and Andrea Sorbi.
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Set theory originated in the 1870s in the works of George Cantor, answering questions
both from real analysis and the infinite. Model theory appeared in 1915 in the work of
Leopold Lowenheim about elementary substructures and elementary extensions. In the
modern presentation of mathematical logic, both areas are extremely related. The goal of
this presentation is to share recent results relating both areas.

The first topic is a generalization of first order logic: infinitary logics.

Definition 1. Let κ and λ be regular cardinals and let L be a first order language. The
logic Lκω has the same terms and atomic formulas as first order logic and generalises the
conjunction operation from finitely many to less than κ many. The logic Lκλ extends Lκω

by generalizing the quantification operation from finitely many to less than λ many.

Infinitary logics appeared in the 1950s. Let us mention that weakly compact and
strongly compact cardinals arised in this are as the answer to the following question:
what infinitary logics admit compactness theorems? The search for infinitary logics with
a model theory similar to that of first order logic allowed for a model theoretic study of
theories that are relevant to set theory. As the most prominent example I would mention
the following result by Barwise: any countable model of ZF can be end-extended to an
(ill-founded) model of ZFC + V = L.

We pursue this topic with an emphasis on the relation between classical infinitary
logics and forcing, or from another point of view, Boolean valued models. The main
idea we present is the following: instead of applying infinitary logics as a mean towards
understanding classical Tarski like models (that is, with a 0-1 truth value), we consider
infinitary logic the object of study itself and look for a semantic providing a nice model
theory. This semantic is precisely given by Boolean valued models and allows to separate
the logics Lκλ from the logics Lκω with a very natural condition, the mixing property. In
this context two main theorems are proved: interpolation and omitting types [2].

The second direction is obtained from the model theoretic notion of indiscernibles.
These were first introduced by Silver as a way to describe and understand the constructible
universe L as well as its theory. Very soon after Silver’s result on 0♯, Solovay [1] realized
that the technique could be pursued not only in the model L, but also in L(R). The main
result in this direction, which we will argue how to generalize, is the following: Let A be
a transitive set and T the theory of L(A) in language LA. Then T has a prime model.
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An undirected graph G is a pair (V,E), where V is the set of vertices and E is an
irreflexive symmetric binary relation on V . We refer to E as the set of edges of G. Given
two undirected graphs G1 = (V1, E1) and G2 = (V2, E2), a graph homomorphism is a
function h : V1 → V2 such that if x E1 y then h(x) E2 h(y). The graph homomorphism
relation≼ is an extensively studied quasi-order. It finds application in several fields due to
the possibility of encoding objects and their relationships as graphs and homomorphisms
between them. Independently of the field one is working in, a recurring theme is that the
graph homomorphism quasi-order is very complicated, or, in other words, it can encode
“a lot”; in such cases, one usually says that graph homomorphism is universal. However,
the proofs of those universality results are often ad hoc constructions which depend on the
framework at hand and cannot be used in other ones. The goal is to unify these different
perspectives, designing a standard operation on graphs which allows us to reprove at
once many existing universality results, and solve some natural open problems. Despite
its simplicity, our technique unexpectedly leads to applications in quite diverse areas of
mathematics, such as category theory, structural combinatorics, classical descriptive set
theory, model theory, generalized descriptive set theory, and theoretical computer science.
This is a joint work with Luca Motto Ros.
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A rig is an algebra ⟨R,+, ·, 0, 1⟩ where ⟨R,+, ·⟩ is a commutative semiring in which
0 and 1 are the neutral elements for + and ·, and multiplication by 0 annihilates R, i.e.
0 · x = 0 for any x ∈ R. We call 2-rig any additively idempotent rig.

It has been maintained (see [2, 4]) that the category of 2-rigs has many things in
common with the category of k-algebras for an algebraically closed field k. From this
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perspective, the theory of 2-rigs has a very geometric flavor. The reason for this claim
is that both categories are co-extensive, i.e. dual to an extensive category. A category C
with finite coproducts is extensive [1] if the canonical functor C/X × C/Y → C/(X +
Y ) is an equivalence for every pair of objects X, Y in C. Extensivity describes a basic
property of coproducts in categories ‘of spaces’, with many interesting consequences. For
instance, while the category of topological spaces and continuous functions between them
is extensive, the category of groups is not.

The reason for considering the concept of Weil 2-rigs, which we are about to intro-
duce, is in accordance with the above proposal. Let C be a category with a terminal object
1. If X is an object of C, a point of X is an arrow 1→ X . It is well known that there may
exist several non-isomorphic objects with only one point. As proved in [3], the finitely
generated local complex algebras that have a unique map into the (initial algebra) C are
the so-called Weil algebras; intuitively, these are function algebras of spaces with a single
point. In this work, we are concerned with similar objects in the category of 2-rigs.

Definition 1. A 2-rig R is called Weil if there exists a unique homomorphism from R into
the initial 2-rig 2.

We present here two characterizations of Weil 2-rigs: the first is in terms of its prime
ideals, the second is an explicit description in geometric logic. Recall that in any 2-rig
one can define a partial order by setting x ≤ y iff x+ y = y.

Theorem 2. Let R be any 2-rig. Then the following are equivalent.

1. R is a Weil 2-rig.

2. R has a unique prime ideal downward-closed with regard to ≤.

3. For all x ∈ R there exits n ∈ N such that xn ≤ 0 or 1 ≤ rx for some r ∈ R.

The characterization of Weil 2-rigs in terms of prime ideals also allows us to prove
the following result.

Theorem 3. Weil 2-rigs form a coreflective subcategory of 2-rigs.

Following the geometric guidance, the next definitions are again natural. An arrow
f : X → Y in C is called constant if it factors through the terminal object. More generally,
an arrow f : X → Y is called a pseudo-constant if it coequalizes all the points of X; in
other words: for every pair of points a, b : 1→ X , one has f(a) = f(b).

1 [transform canvas=yshift=1ex, r, "b"] [transform canvas=yshift=-1ex, r, "a"] X [r, "f"]
Y

Of course, every constant arrow is pseudo-constant. Dualizing, we obtain:

Definition 4. A homomorphism of 2-rigs f : A → B is called pseudo-stant if for each
pair g, h : B → 2 one has g ◦ f = h ◦ f .

In Set pseudo-constants maps are constant, but this is not true, in general, in categories
of spaces. Using Theorem 3 we prove that in the opposite category of 2-rigs the image of
any pseudo-constant map has exactly one point.
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Corollary 5. Any pseudo-stant arrow in 2Rig factors through a Weil 2-rig.

Again, guided by geometric intuition, one might conjecture that, for a 2-rig A, the
family of all maps from Weil 2-rigs into A is jointly monic. Unfortunately, this is false,
as a finite example shows. Nevertheless, finitely generated free 2-rigs have this property,
as recorded in the following result.

Theorem 6. Every finitely generated free 2-rig is a subdirect product of finite Weil 2-rigs.

From this it can be easily deduced the following corollary.

Corollary 7. The variety of 2-rigs is generated by finite Weil 2-rigs.

We conclude by noticing that all the aforementioned results also apply to the subvari-
ety of 2-rigs formed by integral rigs, i.e, rigs that satisfy the integrality law x+ 1 = 1.
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In recent years, there has been a growing interest in various weakenings for theo-
ries of dependent types, particularly those weakenings with respect to the strength of the
computation rules of the type constructors. When a dependent type theory has a type
constructor that relies on a propositional equality instead of a judgemental equality, as is
the case in Martin-Löf Type Theory, one says that the type constructor is in propositional
form. Thus, a dependent type theory will have e.g. propositional identity types if it is
endowed with a type constructor satisfying the usual rules of intensional identity types,
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except for the judgemental equality of its computation rule: whenever we are given judge-
ments x, y : A; p : x = y ⊢ C(x, y, p) : TYPE and x : A ⊢ q(x) : C(x, x, r(x)), in place
of asking that the judgement x : A ⊢ J(x, x, r(x), q) ≡ q(x) holds -here J denotes the
identity type eliminator-, we only ask that a judgement:

x : A ⊢ H(x, q) : J(x, x, r(x), q) = q(x)

holds; see [2, 3] for more details.
Coquand and Danielsson [2] were the first to consider propositional identity types.

This type constructor has since been extensively studied by van den Berg [3], Bocquet [4],
Spadetto [6] and others. One might consider the same form of weakening for the compu-
tation rule of dependent sum types and dependent product types: these type constructors
satisfying a propositional computation rule will be called propositional dependent sum
types and propositional dependent product types respectively.

In this talk, we discuss a dependent type theory that includes propositional identity
types, propositional dependent sum types, and propositional dependent product types,
along with an arbitrary family of atomic types. We will refer to such a theory as a propo-
sitional type theory. The aim of this talk is to show how such a calculus admits a natural
notion of semantics - generalising the one presented in [5] - via 2-dimensional categori-
cal structures called display map 2-categories, where propositional type constructors are
encoded as 2-dimensional categorical properties. We compare the class of models accord-
ing to this semantics with the class of those derived from the usual notion of semantics
for theories of dependent types, which is typically phrased via display map categories or
categories with attributes (see [1]).
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According to Tarski’s celebrated model-theoretic definition of logical consequence a
sentence φ follows logically from a class of sentences Γ if and only if every model of the
sentences in Γ is also a model of the sentenceφ [8]. While explicating the notion of logical
consequence for a wide range of languages the definition relies on a prior division of the
expressions of the language of φ and Γ into logical and extra-logical: the logical constants
of a language directly influence the range of admissible models to take into account when
assessing a claim of consequence and thereby which arguments are logically valid.

Since logical consequence is assumed to be a formal relation, i.e., one that is not influ-
enced by extraneous ‘empirical’ information, the choice of which expressions to count as
logical is not arbitrary: it must be such as to ensure that inferences licensed on the basis of
that choice respect the constraint of formality. Determining the right boundary between
logical and non-logical constants is thus of crucial importance to the Tarskian project of
providing an adequate model-theoretic explication of the notion of logical consequence.
If too many, or inappropriate, expressions are classified as logical several ‘material’, non-
formal transitions will, wrongly, qualify as logical consequences; if too few expressions
are taken to be logical the resulting relation of logical consequence will be impoverished
and not yield an adequate account for a given language. This is the demarcation problem
of the logical constants.

Although it is easy enough to provide a satisfactory division of the required kind for
common logical languages, such classifications often proceed by means of uninformative
enumerations. This unprincipled and case-by-case determination contrasts sharply with
the generality of the definition of logical consequence which applies to all languages
of a particular type indiscriminately. Tarski himself regarded the project of providing a
mathematically rigorous explication of the notion of logical consequence as unfinished
until this crucial issue could be addressed. What is needed to put the model-theoretic
definition of logical consequence on a firm philosophical foundation and shield it against
skeptical attacks is, therefore, a criterion of logicality, a set of mathematically precise
and philosophically informative principles which delineate, for the kinds of languages
covered by Tarski’s definition, the appropriate class of logical constants.

In the tradition of devising criteria to solve the demarcation problem of the logical
constants invariance-based approaches hold a prominent place ([9], [7], [6], [1]). These
criteria ground the formality of logical inferences in properties of the model-theoretic
denotations of purported logical constants. Despite oftentimes regarded as a necessary
component of delineating the logical expressions of a language, purely invariance-based
criteria appear to face issues they are, by their very design, unable to overcome. Criteria of
this sort for the most part address only the semantic question of what constitutes a logical
meaning while neglecting the attendant meta-semantic question of how logical constants
come to possess such meanings.

The goal of this talk is to present, motivate and defend a novel criterion of logicality
which supplements invariance-based constraints with inferentialist requirements on the
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determination of meaning and to explore its scope and some of its consequences. Central
to the proposed criterion is a combination of insights from two traditions in the philosophy
of logic and language which, together, address both the semantic and meta-semantic ques-
tion: from the model-theoretic tradition it adopts the idea that the formality of logical con-
sequence is grounded in properties of the denotation of logical expressions, best captured
by an invariance constraint. From the inferentialist tradition it takes up the insight that
the meaning of a logical expression should be recoverable from its inferential behaviour,
that its meaning should be uniquely determined by its inferential role. This is operational-
ized by means of a categoricity-requirement. The resulting criterion demands that for an
expression to be logical the inferential and model-theoretic aspects of its meaning must
cohere in such a way that its inferential behaviour (codified by a consequence relation)
uniquely determines one among its consistent, formal – i.e., (isomorphism-)invariant, –
model-theoretic values (see [2]).

After motivating a combined criterion of this kind I assess how it fares with respect to
expressions from the category of generalized quantifiers. Based on a recent result by Bon-
nay & Westerståhl [3] one can show that the criterion indeed covers the standard classical
quantifiers of FOL (a rather minimal standard of adequacy). I then proceed to investigate
its scope and limits by means of two types of examples (restricting consideration to type
⟨1⟩ quantifiers):

(1) the quantifierQ0, ‘there are infinitely many’ and, relatedly, also the quantifier ‘there
are finitely many’ qualify as logical according to the proposed criterion.

(2) the quantifier Q1, ‘there are uncountably many’ and various of its relatives of the
form Qα (α > 1) do not qualify as logical under the proposed criterion.

If there is time, I will consider further examples of quantifiers that (do not) qualify as
logical according to the criterion and present some results regarding their unique determi-
nation (relating to preservation of this property under, e.g., boolean combinations, EC∆-
definability, etc.).

In the last part of the talk I want to pursue a particular consequence of the criterion and
explore the resulting conception of logic a bit further: it is well-known that the natural
number structure can be categorically characterized in the language of FOL extended
by the quantifier ‘there are (in)finitely many’. I will here consider the question in how
far the determinate reference to the natural number structure achieved on the basis of
uniquely determinable notions provides an effective reply to the ‘model-theoretic skeptic’
in the philosophy of mathematics (see, e.g., [4]) who doubts our ability to achieve, in a
naturalistically acceptable way, such reference.

This talk incorporates joint work with Denis Bonnay.
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A special class of semirings, often referred to as rigs, are those semirings in which
both operations are commutative and where the additive identity is multiplicatively ab-
sorbing.⋆ More formally, a rig is an algebra R = ⟨R,+, ·, 0, 1⟩ satisfying x · (y + z) ≈
(x ·y)+(x ·z) and 0 ·x ≈ 0, where both ⟨R,+, 0⟩ and ⟨R, ·, 1⟩ are commutative monoids.
Rigs are rather general structures, encompassing e.g., commutative rings (by taking the
appropriate fragment) and even bounded distributive lattices, and are therefore pervasive
many disciplines of mathematics, and even computer science, in one form or another.

Of special interest are those (sub-) varieties of additively-idempotent rigs, called 2-
rigs, and integral rigs (i.e., satisfying 1 + x ≈ x), called irigs. In fact, the former class
subsumes the latter. Since addition is idempotent in these structures, the additive fragment
is actually a semilattice with an induced a partial order in which 0 is the least element, and

⋆The name coming from the pun“rng" (“ring” without identity), where a “rig" is a “ring" without
negatives
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in the case of irigs, also has the constant 1 as the greatest element. In particular, bounded
distributive lattices are exactly those irigs in which multiplication is (also) idempotent.

While the names “2-rigs” and “irigs” originate from algebraic-geometric considera-
tions, they also constitute the {∨, ·, 1, 0}-fragments of (commutative) residuated struc-
tures, namely FLeo and FLew-algebras, respectively. Such classes of algebras (and their
subvarieties) form the equivalent algebraic semantics, in the sense of Blok and Pigozzi,
for some of the most interesting substructural logics. It is therefore of general interest
studying this fragment, as it naturally corresponds to structural properties of those logics.
For instance, the (algebraic) identities in this signature correspond to structural (inference)
rules in the logics.

In this work we study some basic universal-algebraic properties of rigs, with special
emphasis placed on the idempotent and integral cases. In particular, for which we provide
the following characterization of subdirectly irreducible irigs:

Proposition 1. An irig R is subdirectly irreducible if and only if the following hold:

1. There exists an element ϵ ∈ R, called the second element, such that ϵ ≤ r for any
r ̸= 0;

2. Each distinct pair of elements a, b ∈ R can be separated, meaning a · r ̸= b · r with
0 ∈ {a · r, b · r} for some r ∈ R.

Given the above characterization, it is not difficult to see that the monolith of a sub-
directly irreducible irig coincides with the set of pairs ∆ ∪ {(0, ϵ), (ϵ, 0)}, i.e., the only
elements that are “collapsed” are zero and the second element. More generally, we call
a pair of distinct elements a, b in an algebra a clique if the congruence generated by the
pair collapses only the pair a, b. Guided by the arguments used to establish Proposition
1, a more general theorem for rigs arises. In the context of 2-rigs, it can be stated more
simply as follows:

Theorem 2. Let R be a 2-rig. Then the following are equivalent.

1. R is subdirectly irreducible whose monolith arises from a clique C.

2. There exists distinct a, b ∈ R, with C := {a, b}, and the following hold:

(a) a ≤ b

(b) x ̸≤ a implies a+ x = b+ x;

(c) ax ̸= a implies ax = bx; and

(d) For any distinct pair c, d ∈ R there is r ∈ R such that either cr ≤ a < dr or
dr ≤ a < cr.

It should be noted, however, that the above is only a sufficient characterization for
subdirectly irreducible 2-rigs, as there are examples whose monolith is more complex.
Nevertheless, the subdirectly irreducible 2-rigs of this form are enough to generate the
variety:

Theorem 3. The variety of 2-rigs is generated by those of (finite) subdirectly irreducible
algebras arising from cliques.
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Moreover, the class mentioned in the above theorem can be specialized even further
to those algebras that additionally admit a certain “geometric” flavor; the so-called Weil
2-rigs.
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Large cardinal axioms are typically formulated in terms of elementary embeddings
from the universe V into some transitive subclass M . By demanding a stronger and
stronger degree of resemblance between V and M , one obtains stronger and stronger
principles of infinity. In the early 1970s, Kunen [3] refuted the natural extreme of this
trend by proving that there is no nontrivial elementary embedding from the universe to
itself. Straining the limits of consistency, Caicedo [2] proposed a new way to extend the
large cardinal hierarchy in ZFC and to obtain axioms just at the edge of Kunen inconsis-
tency:

Definition 1. An elementary embedding j : M → N between two transitive models of
ZFC is cardinal preserving if M and N correctly compute the class of cardinals.

Even though the expectation is that ZFC rules out cardinal preserving elementary
embeddings, their existence is still unclear. Taking the first step towards this line of
research, we consider the case where either M or N is V . More specifically, we show
that cardinal preserving elementary embeddings j : M → V are inconsistent with ZFC,
answering a question of Caicedo. The proof involves singular cardinal combinatorics
and relies on some results concerning square principles (Magidor-Sinapova [4]), good
scales, Jónsson cardinals (Shelah [5]), ω1-strongly compact cardinals (Bagaria-Magidor
[1]) and basic facts from Shelah’s pcf theory. We also discuss the case M = V and look
at the influence that a cardinal preserving elementary embedding j : V → N has on the
universe. It is still open whether ZFC alone can refute such a j. This is joint work with
Gabriel Goldberg.
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One of the most important notions of categorical logic which enables the study of
logic from a pure algebraic perspective is that of a hyperdoctrine, introduced in a series
of seminal papers by F.W. Lawvere [5, 4] in the 1969.

Over the years, several authors have developed, applied and generalized this notion
in many areas of mathematics. Among these, a field that has particularly benefited from
this categorical approach, resulting in a substantial and extensive body of literature (as
expounded, for example, in van Oosten’s book [14]), is that of realizability interpretation
of intuitionistic logical systems.

Despite the long tradition of studying realizability and its variants from a categorical
perspective, there is still a lack of a systematic and in-depth analysis of computability-
like notions. This analysis would begin with the basic notion of recursively enumerable
predicates (r.e.) and extend to include Turing [9, 10], Medvedev [11, 2], Muchnik [2], and
Weihrauch reducibilities [1].

The main purpose of this talk is to explain how we can broaden the application of
categorical tools to computability. This is achieved by introducing a specific doctrine for
r.e. (playing a crucial role in the construction of Joyal’s arithmetic universes [7]) and
for each previously mentioned notion of reducibility, and investigating their abstract and
common universal properties.

Indeed, by citing results from [8] and [13], we demonstrate that all the aforementioned
notions of reducibility emerge as instances of either of the following two categorical con-
structions: the universal completion and the existential completion [12, 6].

These results align with Hofstra’s analysis of realizability-like doctrines [3], aiming
to show that all the doctrines used to build realizability-like toposes are instances of a free
construction adding “generalized existential quantifiers”.
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The long-term goal of our analysis is to establish a common language for the categor-
ical logic community and the computability theorists. Traditionally, these two fields have
used very distinct languages and notations. Therefore, we believe that by providing cate-
gorical explanations of fundamental concepts in computability, framed within the context
of doctrines, we can encourage and strengthen collaborations and interactions between
these two communities.
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A synctactic anti-unification problem consists in finding, for a fixed finite set of terms,
another term s that is a common anti-unifier (or generalizer) for all of them; more for-
mally, given a finite set of terms t1, . . . , tk over some algebraic language, finding a anti-
unifier for them means finding a term s on the same language and substitutions σ1, . . . , σk
such that for all i = 1, . . . , k, σi(s) = ti. The problem of finding an anti-unifier of a
set of terms has first been formalized around 1970 by Popplestone [5], Plotkin [4], and
Reynolds [6], in order to study inductive proofs. In more recent years, anti-unification
has been applied to several domains, such as inductive logic programming, case-based
reasoning, conceptual blending.

In this contribution we are interested in anti-unification up to some equational the-
ory E (also called equational anti-unification); i.e., given an anti-unification problem
{t1, . . . , tk}, a solution is given by a term s for which there exist σ1, . . . , σk such that
for all i = 1, . . . , k, E |= σi(s) = ti.

Given the fact that anti-unification problems always have a solution (mapping a fresh
variable to each term), it becomes relevant to know whether there is a least general solu-
tion: a solution that can be obtained by all other possible solutions by further substitution.
More generally, one can define an order between solutions: given two solutions s and s′,
s is less general than s′ if and only if there exists a substitution σ such that σ(s′) = s; this
gives a preorder, and if one considers the associated equivalence relation, the correspond-
ing equivalence classes (i.e., the anti-unifiers that are “equally general”) form a poset.
Then one can define a notion of anti-unification type, which intuitively gives the cardinal-
ity of the set of least general solutions. Given an equational theory E , its anti-unification
type is the worst possible type occurring among all its anti-unification problems.

The study of equational anti-unification and its type, depending on the equational
theory, have recently received attention (see a recent survey [2]); while an interest for
theoretical foundations seems to be growing, no general approach has yet been developed
within the universal algebraic framework, which arguably is the most natural framework
to deal with models of equational theories. We aim at filling this void.
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We note that in contrast, the study of the “dual” of anti-unification, namely unifi-
cation problems and their type, have been successfully studied in the general algebraic
framework via the approach developed by Ghilardi [3]. In a unification problem, given
by a finite set of terms t1, . . . , tk, one looks for a unifier, i.e. a substitution σ for which
σ(t1) = . . . = σ(tk) for all i = 1, . . . , k. Ghilardi translates the investigation of unifica-
tion problems (up to an equational theory) to the algebraic setting via the use of finitely
presented and projective algebras in the variety determined by the equational theory.

We shall see that, in analogy with Ghilardi’s approach, also in the case of anti-
unification problems one makes use of projective algebras in order to formalize solutions
in the algebraic setting. However, we shall also note that the two problems of unification
and anti-unification have quite a different nature; this difference is apparent when one
studies the poset of solutions. Indeed, while in the unification case the order is really
among the substitutions that yield the solution, in the case of anti-unification the order is
within the terms. This difference yields the necessity, in the algebraic setting, to consider
pointed algebras. In detail, given a variety V, we formalize its anti-unification problems
using its pointed companion Vp, i.e. the class of pointed algebras (a,A) given any A ∈ V
and a ∈ A. Vp constitutes a category whose morphisms are pointed homomorphisms, that
is to say homomorphisms h : (a,A)→ (b,B) such that h(a) = b.

Definition 1. We say that an algebraic anti-unification problem for a variety V is a pointed
algebra ((t1, . . . , tk),FV(X)k) in the pointed companion Vp of V, whereX is the finite set
of variables appearing in t1, . . . , tk, and FV(X) is the free algebra in V over the set of gen-
eratorsX . An algebraic solution for such a problem is a pointed algebra (p,P) ∈ Vp such
that P is finitely generated and projective in V and there exists a pointed homomorphism
g : (p,P)→ ((t1, . . . , tk),FV(X)k).

We define a generality order on solutions as follows. A solution (p,P) is said to be less
general than a solution (p′,P′) iff there exists a pointed homomorphism h : (p′,P′) →
(p,P).

Theorem 2. A symbolic anti-unification problem t1, . . . , tk ∈ FV(X) has a solution if
and only if the algebraic problem (t1, . . . , tk,FV(X)k) does; moreover their posets of
solutions are isomorphic.

A key idea of this approach is to see the terms t1, . . . , tk as a single element of an
algebra (precisely of the k-th power of the appropriate free algebra). Building on this
intuition, we show that FV(1), the 1 generated free algebra in the variety under considera-
tion, plays a special role. In particular we show that, under certain assumptions, the study
of the anti-unification type can be reduced to the study of the poset of congruences of
FV(1) that correspond to a projective quotient. A relevant property that we require in or-
der to obtain such a result is for 1-generated subalgebras of free algebras to be projective
in the variety, a condition that is satisfied by many relevant varieties related to logic (e.g.,
Boolean algebras, Heyting algebras, Gödel algebras, Kleene algebras, MV-algebras).

Note that the algebraic approach we presented allows one to study anti-unification
problems for logics that are algebraizable in the sense of Blok and Pigozzi [1]. Consider
a logic L that is Blok-Pigozzi algebraizable and let Q be the quasivariety that is its equiv-
alent algebraic semantics. There is a natural way to associate to L an equational theory:
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consider φ ≈ ψ iff φ and ψ are logically equivalent, i.e., φ and ψ have the same inter-
pretation in every model of the logic. By algebraizability this is exactly the equational
theory of the variety generated by Q. The situation simplifies if L is strongly algebraiz-
able, i.e., Q is a variety. Hence, algebraizable logics inherit the notion of anti-unification
problem and anti-unification type in the sense that they are the ones of their correspond-
ing variety of algebras. We use our methods to study the anti-unification problems and
their type for: classical logic, Gödel-Dummet logic, Kleene’s 3-valued logic, 3-valued
and infinite-valued Łukasiewicz logics.
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In [1], the authors introduced the parallel quotient operator on computational prob-
lems, mapping two partial multi-valued functions f, g to

f/g := sup
≡W

{h : g × h ≤W f}.

They used this notion to study the interplay between Ramsey-theoretical problems as RT2
2

or SRT2
2 and other well-known computational problems like LPO and NON. However,

many of the properties of this operator are left unexplored; most notably, they raised the
question of whether the quotient operator is total.
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We answer this question affirmatively, and provide a canonical representative for such
degree. We observe that 0 <W f/g iff g ≤∗

W f , which in turn implies that the continuous
Weihrauch degrees are first-order definable in (W ,≤W,×). We also observe that f/g is
pointed iff g ≤W f and that f ∗/g ≡W f ∗ × dA where A ⊆ NN is the (possibly empty) set
of oracles witnessing g ≤∗

W f ∗.
Intuitively, f/f calibrates how close is f to being closed under parallel product. In-

deed, f/f ≡W f iff f × f ≤W f . On the other hand, there are many explicit examples
of problems for which f/f ≡W id, like Ck, LPOk, RT1

k. Unsurprisingly, there are de-
grees exhibiting intermediate behaviors. In particular, the quotient operator can be used
to neatly describe some recent results [3] on the uniform computational strength of the
problem DS of finding descending sequences through ill-founded linear orders (originally
introduced in [2]). In particular, we show that

Theorem 1.

1. DS/ÂCCN ≤W lim

2. Π1
1−Bound <W DS/Π1

1−Bound ≤W DS/RT1
2 <W DS

3. DS/CN ≡W DS

This is joint work with Jun Le Goh and Arno Pauly.
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There are many different parameters used in order theory to describe a poset. One
of them is the dimension, which is the least cardinality of a set of linearizations whose
intersection is the starting poset. With such definition, linearly ordered sets have dimen-
sion 1 while antichains have dimension 2. I will introduce order theory and I will state
bounding theorems about the dimension of posets with many examples. Then I will talk
about the strength of these results from the point of view of Reverse Mathematics. This
is joint work with Alberto Marcone and Marta Fiori Carones.
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Baratella and Masini [1, 2, 3] previously explored, from a proof-theoretic perspective,
a propositional and a predicate sequent calculus featuring an ω-type schema of infer-
ence, which naturally interpret the propositional and predicate until-free aspects of Linear
Time Logic (LTL). The present abstract aims to undertake similar investigations within
an intuitionistic framework, obtaining an infinitary Intuitionistic Metric Temporal Logic
(IMTL). In this preliminary investication we will focus on the discrete case.

The idea is to adapt the labelled sequent calculus in [2]. The intended reading of a
labeled formula t : A is ”A holds at time t”.

The relational part is based on Heyting Arithmetic, then the relational language con-
tains 0, s,+.·,=,≤ as primitive symbols. In particular, f will take the place of the suc-
cessor function, which we write as λx.x + 1, and thus fm(t) = t + m. For the sake of
simplicity, we consider the terms as equivalence classes modulo associativity and com-
mutativity.

As in [2] the (propositional) temporal language include the modal operators □[m,n],
□(m,ω), ♢[m,n], ♢(m,ω)

We here focus here on the temporal operator next⃝, definable as⃝ = □[1,1] = ♢[1,1]
via the rules

Γ, t+ 1: α ⊢ ξ
L⃝

Γ, t : ⃝ α ⊢ ξ
Γ ⊢ t+ 1: α

R⃝
Γ ⊢ t : ⃝ α .
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Of course, t : ⃝A is to be read as ”A holds at time t+1.” We also have a rule of temporal
induction

Γ, t+ x : α ⊢ t+ (x+ 1): α
t.i.

Γ, t : α ⊢ t+ u : α

with the condition that x is not in t, u and does not occur freely in Γ.
The main question we are asking is whether there exists a Hilbert-style system for

IMTL. To this end, we derived all the axioms of the intuitionistic S4 (see [4]).
As a title of example, we sjow the proof of the temporal induction principle expressed

in the following form:
⊢ t : A ∧□(A→⃝A)→ □A.

The proof proceeds as follows:

t ≤ t+ x, t+ x : A, (t+ x) + 1: A ⊢ t+ (x+ 1): A
L⃝

t ≤ t+ x, t+ x : A, t+ x : ⃝ A ⊢ t+ (x+ 1): A t ≤ t+ x, t+ x : A ⊢ t+ x : A
L→

t ≤ t+ x, t+ x : A, t+ x : A→⃝A ⊢ t+ (x+ 1): A
t.i.

t ≤ t+ x, t : A, t+ x : A→⃝A ⊢ t+ z : A
L□

t ≤ t+ x, t : A, t : □(A→⃝A) ⊢ t+ z : A
Mono+

t : A, t : □(A→⃝A) ⊢ t+ z : A
L∧

t : A ∧□(A→⃝A) ⊢ t+ z : A
R□

t : A ∧□(A→⃝A) ⊢ t : □A
R→

⊢ t : A ∧□(A→⃝A)→ □A

Notice that we are allowed to use ⊢ t ≤ t+x since we are assuming the temporal part
is based on Heyting arithmetic. To understand if a weaker arithmetic could be enough is
a question we aim to answer to.

Another interesting question we plain to answer to is to understand what principles
are not admissible. For example, we claim that the dual of the temporal induction is not
derivable.

Concerning the semantics, in our opinion what deeply characterizes a purely construc-
tive approach is the BHK interpretation. Consider the intuitionistic model for the discrete
linear temporal logicMV = ⟨Nat, s, 0,V⟩, where we assume to have define the “≤” rela-
tion in terms of primitive recursive subtraction and to have an effective enumeration of all
propositional symbols. The intended meaning of the total recursive evaluation function
V : Nat × Nat → {0, 1} is the following: V(n.m) = 1 means that we have a proof
that the propositional symbol pn is true at m. The BHK interpretation is standard for
propositional connectives. Let’s see some examples for temporal connectives. A proof
of a formula t : ⃝A is a a proof of t + 1 : A; a proof of t : □[m,I)A, with I ≤ ω is a
costruction f that transforms a proof π of t ≤ m+ p < I in a proof f(π) of p : A; a proof
of t : ♢[m,I)A, with I ≤ ω is a triple ⟨f, g, p⟩ such that g is a proof of π of t ≤ m+ p < I
and f is a proof of t : A.

On this basis, we aim to interpret by purely constructive arguments, all the LTL ax-
ioms. For example, form a preliminary inspection, we noticed that the proof of the induc-
tive principle is exactly what Heyting shows in [5]. A mandatory step will be to prove a
soundness theorem w.r.t. the given semantics.
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From these preliminary considerations, it has emerged that studying a purely con-
structive approach in the temporal logic setting seems to be a challenging and interesting
task that we aim to develop.
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